BASIC Language Reference
Volume 2: O-Z

HP 9000 Series 200/300 Computers

HP Part Number 98613-90052

A oacicann

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.
HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable

for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing. performanct *
or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Copyright © Hewlett-Packard Company 1987, 1988, 1989

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (bX3)ii} of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Copyright © AT&T, Inc. 1980, 1984
Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of California.

—
(=24

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

January 1987...Edition 1

November 1987...Edition 2. This edition reflects the 5.0 corrections and 5.1 additions.

May 1988...Update. This edition contains new information regarding the 5.11 revision.
(See SYSTEMS$, and STATUS/CONTROL register for cache memory at select code
32.)

August 1988...Edition 3. This edition contains new information regarding the BASIC/UX
5.5. There are no changes to the BASIC Workstation pages, and the previous
update has been merged.

Printing History iii

iv Printing History

Table of Contents

Volume 1
Using the Keyword Dictionary
Legal Usage Tablec i e 1
Syntax Drawings Explained i e 3
Keywords and Spaces. ... i i 4
Space Between Keywords and Names 4
No Spaces in Keywords or Reserved Groupings 4
Using Keyword Letters foraName 4
Keyboardscoii i e 5
Keyword Dictionary A-N i e 7
Volume 2
Keyword Dictionary O-Z........... ... ittt 417
Appendix A: Language HiStOryouoiuirieaeaaanan.. A-1
Appendix B: Glossary e e B-1
Appendix C: Interface Registers
I/O Path Registersuuinntt i i C-1
Registers for Al I/OPaths........o i i C-1
I/O Path Names Assigned toa Devicecoiviiiiiniinnn... C-1
I/O Path Names Assigned to an ASCII File C-2
I/O Path Names Assigned to a BDAT File C-2
I/O Path Names Assigned to an HP-UX File C-3
I/O Path Names Assigned toa Buffer C-3
Summary of CRT STATUS and CONTROL Registers C-5
Summary of Keyboard Status and Control Registers...................... C-11
Summary of HP-IB Status and Control Registers C-17
Summary of RS-232C Serial STATUS and CONTROL Registers C-23
Overview of Datacomm Status and Control Registers..................... C-32
Summary of Datacomm Interface Status and Control Registers C-34
Summary of Powerfail Status and Control Registers C-48
Summary of GPIO STATUS and CONTROL Registers C-51

Table of Contents v

GPIO RegISters . ot e e e e C-52

Summary of BCD Status and Control Registers.......................... C-54
Summary of EPROM Programmer STATUS and CONTROL Registers C-58
Parity, Cache, Float, and Clock STATUS and CONTROL Register
(Pseudo Select Code 32) ... C-60
SRM Interface STATUS Registers.............. i, C-62
EXT Signal Registers. e C-63
Appendix D: Useful Tables
Option NUmbers i e e e e e D-1
Interface Select Codes i D-2
Display-Enhancement Characters i, D-3
Monochrome Enhancements i i D-3
Color Enhancements ittt D-3
U.S. ASCII Character Codesiiiiiiiiii i D-4
U.S./European Display Characterscviiiiiiiiiinnnnnnns D-6
Katakana Display Characters........ D-12
Master Reset Table i D-16
Graphic Reset Table D-19
Interface Reset Table D-20
Second Byte of Non-ASCII Key Sequences (String) D-22
Selected High-Precision Metric Conversion Factors D-27
Appendix E: Error Messagest e E-1
Appendix F: Keyword Summary
Booting the System F-1
Program Entry/Editing i F-1
Program Debugging and Error Handling F-2
Memory Allocation and Management,, F-3
Comparison Operators. cvvu ittt e e e e e e F-3
General Math F-4
Complex Math F-5
Binary Functionso e F-5
Trigonometric Operationsot F-6
Hyperbolic Operations.t F-6
String Operations F-6
Logical Operatorsoouniiuii i e F-7
MaASS STOTAZE « « « v v e e e e et e e et F-7
Program Control. F-9
Event-Initiated Branching......... F-10
HP-HIL Device SUppOrtouuiii e F-13

vi

Table of Contents

Graphics Controlt F-13

Graphics Plotting e F-15
Graphic Axes and Labeling i F-15
HP-IB Control.ottt e e et F-16
Clock and Calendaro o it et F-16
General Device Input/Output oL F-17
Display and Keyboard Control............t iiiiinn... F-18
Array Operationsottt i e e e F-20
Vocabulary F-21

Table of Contents vii

vili Table of Contents

OFF CDIAL

Supported On WS, UX
Option Required KBD
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement disables any ON CDIAL branching currently set up.

OFF CDIAL

Example Statements

100 OFF CDIAL
200 IF Done THEN OFF CDIAL

Keyword Dictionary 417

OFF CYCLE

Supported On WS, UX
Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON CYCLE statement.

OFF CYCLE

Example Statements

OFF CYCLE
IF Kick_stand THEN OFF CYCLE

Semantics

OFF CYCLE destroys the log of any CYCLE event which has already occurred but
which has not been serviced.

If OFF CYCLE is executed in a subprogram such that it cancels an ON CYCLE in
the calling context, the ON CYCLE definition is restored upon returning to the calling
context.

BASIC/UX Specifics
Resolution is 20 miliseconds. A new child process of BASIC/UX is started for the timer.

418 Keyword Dictionary

OFF DELAY

Supported On WS, UX
Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON DELAY statement.

Example Statements

OFF DELAY
IF Ready THEN OFF DELAY

Semantics

OFF DELAY destroys the log of any DELAY event which has already occurred but which
has not been serviced.

If OFF DELAY is executed in a subprogram such that it cancels an ON DELAY in
the calling context, the ON DELAY definition is restored upon returning to the calling
context.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASIC/UX is started for the timer.

Keyword Dictionary 419

OFF END

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously enabled and defined by an
ON END statement.

(orr e)—(ef 700"

Item | Description I Range

I/0O path name |name assigned to a mass storage file l any valid name (see ASSIGN)

Example Statements

OFF END QFile
IF Special THEN OFF END @Source

Semantics

If OFF END is executed in a subprogram and cancels an ON END in the context which
called the subprogram, the ON END definitions are restored when the calling context is
restored.

If there is no ON END definition in a context, end-of-file and end-of-record are reported
as errors.

420 Keyword Dictionary

OFF EOR

Supported On WS, UX
Option Required TRANS
Keyboard Executable No
Programmable Yes
In an IF... THEN Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON EOR statement.

(orr_eor)—(ef o5 |~

Item I Description | Range
I/O path name

name assigned to a device, a group of de-
vices, or a mass storage file

any valid name

Example Statements

OFF EOR @File
OFF EOR @Device_selector

Semantics

The I/O path may be assigned either to a device, a group of devices, or to a mass storage
file or pipe; however, if the 1/O path is assigned to a BUFFER, an error is reported when
the OFF EOR statement is executed.

OFF EOR destroys the log of any EOR event which has already occurred but which has
not been serviced.

If OFF EOR is executed in a subprogram such that it cancels an ON EOR in the calling
context, the ON EOR definition is restored upon returning to the calling context.

Keyword Dictionary 421

OFF EOT

Supported On WS, UX
Option Required TRANS
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON EOT statement.

(orF ot }—(e) 02" |+

Item | Description | Range

I/O path name |name assigned to a device, a group of de-

vices, or a mass storage file

any valid name

Example Statements

OFF EOT QFile
IF Done_flag THEN OFF EOT Q@Info

Semantics

The I/0 path may be assigned either to a device, a group of devices, or to a mass storage
file or pipe; however, if the /O path is assigned to a BUFFER, an error is reported when
the OFF EOT statement is executed.

OFF EOT destroys the log of any EOT event which has already occurred but which has
not been serviced.

If OFF EQT is executed in a subprogram such that it cancels an ON EOT in the calling
context, the ON EOT definition is restored upon returning to the calling context.

422 Keyword Dictionary

OFF ERROR

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously defined and enabled by an

ON ERROR statement. Further errors are reported to the user in the usual fashion.

OFF ERROR

Keyword Dictionary

423

OFF EXT SIGNAL

Supported On UX
Option Required n/a
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously defined by an ON EXT
SIGNAL statement.

OFF EXT SIGNAL
. signal '
number

Item | Description | Range

1 thru 32
(see ON EXT SIGNAL)

signal number numeric expression, rounded to integer

Example Statements

OFF EXT SIGNAL 4
OFF EXT SIGNAL

Semantics

Not specifying a system signal number disables the event-initiated branches for all system
signals. Specifying a signal number causes the OFF EXT SIGNAL to apply to the event-
initiated log entry for the specified signal only.

Any pending ON EXT SIGNAL branches for the affected signals are lost and further
signals are vectored to the default handler for the EXT SIGNAL. See ON EXT SIGNAL
for a description of the default actions for each EXT SIGNAL.

The action to be taken for an EXT SIGNAL is inherited when entering a new context
(subprogram). This action stays in effect until an ON EXT SIGNAL or OFF EXT
SIGNAL is executed. When an OFF EXT SIGNAL is executed within a context, the
action for that external signal reverts to its default action. When the context is exited,
the current action reverts to what it was in the calling context.

424 Keyword Dictionary

OFF HIL EXT

Supported On WS, UX
Option Required KBD
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement disables an end-of-line interrupt previously enabled by an ON HIL EXT
statement. When this statement is executed, any pending ON HIL EXT branch is
cancelled.

OFF HIL EXT

Example Statement

OFF HIL EXT
IF NOT Hil_active THEN OFF HIL EXT

Keyword Dictionary 425

OFF INTR

Supported On WS, UX
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously defined by an ON INTR
statement.

(OFF INTR)

1

interface
select code

Item | Description I Range

5, and 7 thru 31

interface select
code

numeric expression, rounded to an integer;
Default = all interfaces

Example Statements

OFF INTR
OFF INTR Hpib

Semantics

Not specifying an interface select code disables the event-initiated branches for all
interfaces. Specifying an interface select code causes the OFF INTR to apply to the
event-initiated log entry for the specified interface only.

Any pending ON INTR branches for the effected interfaces are lost and further interrupts
are ignored.

426 Keyword Dictionary

OFF KBD

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels the event-initiated branch previously defined by an ON' KBD
statement.

Example Statements

OFF KBD
IF NOT Process_keys THEN OFF KBD

Semantics

When this statement is executed, any pending ON KBD branch is cancelled, and the
keyboard buffer is cleared.

If OFF KBD is executed in a subprogram such that it cancels an ON KBD in the calling
context, the cancelled ON KBD definition is restored when the calling context is restored.
However, the keyboard buffer’s contents are not restored with the calling context, because
the buffer was cleared with the OFF KBD.

Keyword Dictionary 427

OFF KEY

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON KEY statement.

(oFF KEY)- -
selector
Item | Description I Range

key selector numeric expression, rounded to an integer; |0 thru 19

Default = all keys

Example Statements

OFF KEY
OFF KEY 4

Semantics

Not specifying a softkey number disables the event-initiated branches for all softkeys.
Specifying a softkey number causes the OFF KEY to apply to the specified softkey only.
If OFF KEY is executed in a subprogram and cancels an ON KEY in the context which
called the subprogram, the ON KEY definitions are restored when the calling context is
restored.

Any pending ON KEY branches for the effected softkeys are lost. Pressing an undefined
softkey generates a beep.

428 Keyword Dictionary

OFF KNOB

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously defined and enabled by the
ON KNOB statement. Any pending ON KNOB branches are lost. Further use of the
knob will result in normal scrolling or cursor movement.

Keyword Dictionary 429

OFF SIGNAL

Supported On WS, UX
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

OFF SIGNAL cancels the ON SIGNAL definition with the same signal selector. If no
signal selector is provided, all ON SIGNAL definitions are cancelled. OFF SIGNAL only
applies to the current context.

(OFF SIGNAL j‘ -
l signal I ’
selector
Item | Description l Range
signal selector |numeric expression, rounded to an integer | 0 thru 15

Example Statements

OFF SIGNAL
OFF SIGNAL 15

430 Keyword Dictionary

OFF TIME

Supported On WS, UX
Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an IF... THEN Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON TIME statement.

Example Statements

OFF TIME
IF Attended THEN OFF TIME

Semantics

OFF TIME destroys the log of any TIME event which has already occurred but which
has not been serviced.

If OFF TIME is executed in a subprogram such that it cancels an ON TIME in the calling
context, the ON TIME definition is restored upon returning to the calling context.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASIC/UX is started for the timer.

Keyword Dictionary 431

OFF TIMEOUT

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON TIMEOUT statement.

((oFF TIMEOUT) —
select code
Item I Description | Range

interface select
code

numeric expression, rounded to an integer; |7 thru 31

Default = all interfaces

Example Statements

OFF TIMEQUT
OFF TIMEQUT Isc

Semantics

Not specifying an interface select code disables the event-initiated branches for all
interfaces. Specifying an interface select code causes the OFF TIMEOUT to apply to
the event-initiated branches for the specified interface only. When OFF TIMEOUT is
executed, no more timeouts can occur on the effected interfaces.

BASIC/UX Specifics

All channels of MUX interfaces have timeouts disabled by OFF TIMEOUT without an
interface select code.

432 Keyword Dictionary

ON

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement transfers program execution to one of several destinations selected by the
value of the pointer.

@ o

Inumber I 1

Item | Description Range
pointer numeric expression, rounded to an integer |1 thru 74
line number integer constant identifying a program line |1 thru 32766
line label name of a program line any valid name

Example Statements

ON X1 GOTO 100,150,170
IF Point THEN ON Point GOSUB First,Second,Third,Last

Semantics

If the pointer is 1, the first line number or label is used. If the pointer is 2, the second
line identifier is used, and so on. If GOSUB is used, the RETURN is to the line following
the ON...GOSUB statement.

If the pointer is less than 1 or greater than the number of line labels or numbers, error

19 is generated. The specified line numbers or line labels must be in the same context
as the ON statement.

Keyword Dictionary 433

ON CDIAL

This statement sets up and enables a branch to be taken upon sensing rotation of one of

Supported On
Option Required
Keyboard Executable
Programmable

In an IF...THEN

the dials on a “control dial” device.

(ON CDIAL \F
O

CALL subﬁg;gr‘am
Item Description Range
priority numeric expression, rounded to an integer; |1 thru 15
Default = 1
line label name of a program line any valid line name

line number

subprogram
name

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements

100 ON CDIAL GOSUB Dial_serv_rtn
200 ON CDIAL,Priority CALL Dial_sub

434 Keyword Dictionary

1 thru 32 766

any valid name

Semantics
All CDIAL function registers are automatically cleared when ON CDIAL is executed.

The interrupt service routine for the branch initiated when one of the control dials is
rotated should read the number of pulses with the CDIAL function.

If ON CDIAL is used to set up control dial interrupts and then disabled (with OFF
CDIAL), the CDIAL function can still be used to determine valid information about
control dials: however, note that subsequent pulses will not be accumulated into the
CDIAL registers, and when a register is read with CDIAL, that register is automatically
cleared by the system.

The most recent ON CDIAL (or OFF CDIAL) overrides any previous ON CDIAL
branching. If the overriding branch is defined in another context (such as in a
SUB subprogram or user-defined FN), then the overriding branch is canceled and the
overridden branch is restored upon return to the calling context.

The ON CDIAL statement behaves like the ON KNOB and ON HIL EXT statements:

e When ON CDIAL is executed in a SUB context and program control exits that
context, the pulses from control dials will continue to be accumulated (and can be
read by CDIAL). No interrupts occur if there is no ON CDIAL active in the current
context.

e Conversely, if an ON CDIAL has been executed in a context and then OFF CDIAL
is executed in a called context, then upon returning to the calling context the
pulses will be routed to the BASIC system (instead of the CDIAL function) and
no interrupts will be initiated.

Keyword Dictionary 435

The priority can be specified, with the highest represented by a value of 15. (This is the
highest user-specifiable priority; however, ON END and ON TIMEOUT have priorities
of 16, and ON ERROR has a priority of 17.) An ON CDIAL branch can interrupt the
currently executing program segment, if its priority is higher than the current SYSTEM
PRIORITY (use SYSTEM$("SYSTEM PRIORITY") to determine the current priority).

Upon completion of the interrupt service routine, CALL and GOSUB branches are
returned to the next line that would have been executed if the ON CDIAL branch had not
been serviced; the system priority is returned to the value in effect before the ON CDIAL
branch occurred. RECOVER forces the program to go directly to the specified line in
the context containing the ON CDIAL statement; when RECOVER forces a change of
context, the system priority is restored to the value which existed in the original (defining)
context at the time that the context was exited.

CALL and RECOVER remain active (that is, they can initiate branches) when the
context changes to a subprogram (SUB), unless the change in context is caused by a
keyboard-originated CALL statement. GOSUB and GOTO remain active when the
context changes to a subprogram, but the branch is not initiated until after the calling
context is restored.

ON CDIAL branches are disabled by DISABLE, temporarily disabled when the program
is executing an INPUT, LINPUT, or ENTER KBD... statement; and deactivated by
OFF CDIAL.

ON CDIAL does not initiate branches for other “knob” devices (such as built-in knobs
of 98203 keyboards or HIL mouse devices).

436 Keyword Dictionary

ON CYCLE

Supported On
Option Required

Keyboard Executable

Programmable
In an IF...THEN

WS, UX
CLOCK

Yes
Yes

This statement defines and enables an event-initiated branch to be taken each time the
specified number of seconds has elapsed.

(ON CYCLE)—-’I seconds }

O]

&D

line number

. line label l

subprogram
name

Item Description Range
seconds numeric expression, rounded to the nearest | 0.01 thru 167 772.16
0.02 second
priority numeric expression, rounded to an integer; |1 thru 15
Default=1
line label name of a program line any valid name

line number

subprogram
name

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements

ON CYCLE 1 GOSUB One_second
ON CYCLE 3600,12 CALL Chime

1 thru 32 766

any valid name

Keyword Dictionary 437

Semantics

The most recent ON CYCLE (or OFF CYCLE) definition overrides any previous ON
CYCLE definition. If the overriding ON CYCLE definition occurs in a context different
from the one in which the overridden ON CYCLE occurs, the overridden ON CYCLE is
restored when the calling context is restored, but the time value of the more recent ON
CYCLE remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON CYCLE can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON CYCLE
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON CYCLE
statement. CALL and GOSUB will return to the next line that would have been executed
if the CYCLE event had not been serviced, and the system priority is restored to that
which existed before the ON CYCLE branch was taken. RECOVER forces the program
to go directly to the specified line in the context containing that ON CYCLE statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON CYCLE is disabled by DISABLE and deactivated by OFF CYCLE. If the cycle value
is short enough that the computer cannot service it, the interrupt will be lost.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASIC/UX is started for the timer.

438 Keyword Dictionary

ON DELAY

Supported On WS, UX
Option Required CLOCK
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement defines and enables an event-initiated branch to be taken after the
specified number of seconds has elapsed.

@‘l DEL@—’{ seconds }

O[]

line label

line number

subpragram
name

Item Description Range
seconds numeric expression, rounded to the nearest | 0.01 thru 167 772.16
0.02 second
priority numeric expression, rounded to an integer; |1 thru 15
Default=1
line label name of a program line any valid name

line number

subprogram
name

Examples

integer constant identifying a program line

name of a SUB or CSUB subprogram

ON DELAY 10 GOTO Default
ON DELAY 3,2 GOSUB Low_level

1 thru 32 766

any valid name

Keyword Dictionary 439

Semantics

The most recent ON DELAY (or OFF DELAY) definition overrides any previous ON
DELAY definition. If the overriding ON DELAY definition occurs in a context different
from the one in which the overridden ON DELAY occurs, the overridden ON DELAY is
restored when the calling context is restored, but the time value of the more recent ON
DELAY remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON DELAY can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON DELAY
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON DELAY
statement. CALL and GOSUB will return to the next line that would have been executed
if the DELAY event had not been serviced, and the system priority is restored to that
which existed before the ON DELAY branch was taken. RECOVER forces the program
to go directly to the specified line in the context containing that ON DELAY statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated

call. GOSUB and GOTO remain active when the context changes to a subprogram, but
the branch cannot be taken until the calling context is restored.

ON DELAY is disabled by DISABLE and deactivated by OFF DELAY.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASIC/UX is started for the timer.

440 Keyword Dictionary

ON END

Supported On
Option Required
Keyboard Executable
Programmable

In an IF...THEN

WS, UX
None

No
Yes
Yes

This statement defines and enables an event-initiated branch to be taken when end-of-file
is reached on the mass storage file associated with the specified I/O path.

1/0 path

ON END Hame 6070
CALL
Item

subprogram
name

Description

Range

I/O path name

line label
line number

subprogram
name

Example Statements

name assigned to a mass storage file

name of a program line
integer constant identifying a program line

name of a SUB or CSUB subprogram

ON END @Source GOTO Next_file

ON END @Dest CALL Expand

any valid name
(see ASSIGN)

any valid name
1 thru 32766

any valid name

Keyword Dictionary 441

Semantics
The ON END branch is triggered by any of the following events:

e When the physical end-of-file is encountered.
e When an ENTER statement reads the byte at EOF or beyond.
e When a random access OUTPUT or ENTER requires more than one defined record.

e When a random access OUTPUT is attempted beyond the next available record.
(If EOF is the first byte of a record, then that record is the next available record.
If EOF is not at the first byte of a record, the following record is the next available
record.)

The priority associated with ON END is higher than priority 15. ON TIMEOUT and
ON ERROR have the same priority as ON END, and can interrupt an ON END service
routine.

Any specified line label or line number must be in the same context as the ON END
statement. CALL and GOSUB will return to the line immediately following the one
during which the end-of-file occurred, and the system priority is restored to that which
existed before the ON END branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON END statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, if the
I/O path name is known in the new context. CALL and RECOVER do not remain active
if the context changes as a result of a keyboard-originated call. GOSUB and GOTO do
not remain active when the context changes to a subprogram.

The end-of-record error (error 60) or the end-of-file error (error 59) can be trapped by

ON ERROR if ON END is not active. ON END is deactivated by OFF END. DISABLE
does not affect ON END.

442 Keyword Dictionary

ON EOR

Supported On WS, UX
Option Required TRANS
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement defines and enables an event-initiated branch to be taken when an end-
of-record is encountered during a TRANSFER.

lI line label I

line number

subprogram
name

Item Description _ Range

I/O path name name assigned to a device, a group of de-|any valid name
vices, or a mass storage file

priority numeric expression, rounded to an integer; |1 thru 15
Default=1

line label name of a program line any valid name

line number integer constant identifying a program line |1 thru 32766

subprogram name of a SUB or CSUB subprogram any valid name

name

Example Statements

ON EOR @Gpio GOSUB Gpio_eor
ON ECR @Hpib,9 CALL Eor_sensed

Keyword Dictionary 443

Semantics

The I/0 path may be assigned either to a device, a group of devices, or to a mass storage
file or pipe. If the I/O path is assigned to a BUFFER, an error is reported when the ON
EOR statement is executed.

If a TRANSFER statement uses an 1/O path name which is local to a subprogram and
the TRANSFER has not completed by the time the context is exited, returning to the
original context will be deferred until the end of the TRANSFER; at that time the ON
EOR event cannot be serviced. To ensure that the event will be serviced, a statement
that cannot be executed in overlap with the TRANSFER must be executed before the
context is exited. A WAIT FOR EOR ONon_buf statement is used for this purpose.

End-of-record delimiters are defined by the EOR parameters of the TRANSFER state-
ment (i.e., DELIM, COUNT, or END). An EOR event occurs when any of the specified
end-of-record delimiters is encountered during a TRANSFER. The event’s occurrence is
logged, and the specified branch is taken when system priority permits.

The most recent ON EOR. (or OFF EOR) definition for a given I/O path name overrides
any previous ON EOR definition. If the overriding ON EOR definition occurs in a context
different from the one in which the overridden ON EOR occurs, the overridden ON EOR
is restored when the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON EOR can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON EOR
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EOR
statement. CALL and GOSUB will return to the next line that would have been executed
if the EOR event had not been serviced, and the system priority is restored to that which
existed before the ON EOR branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON EOR statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated

call. GOSUB and GOTO remain active when the context changes to a subprogram, but
the branch cannot be taken until the calling context is restored.

ON EOR is disabled by DISABLE and deactivated by OFF EOR.

444 Keyword Dictionary

ON EOT

Supported On WS, UX
Option Required TRANS
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement defines and enables an event-initiated branch to be taken when the last
byte is transferred by a TRANSFER statement.

(on EM

1/0 path |

name |

Item

O]

Description

line label

line number

subprogram
name

Range

I/O path name
priority

line label
line number

subprogram
name

name assigned to a device, a group of de-
vices, or a mass storage file

numeric expression, rounded to an integer;
Default=1

name of a program line
integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements

ON EOT @File GOTO Finished
ON EOT @Hpib,5 CALL More

any valid name
1 thru 15

any valid name
1 thru 32766

any valid name

Keyword Dictionary 445

Semantics

The I/O path may be assigned either to a device, a group of devices, or to a mass storage
file or pipe. If the I/O path is assigned to a BUFFER, an error is reported when the ON
EOT statement is executed.

If a TRANSFER statement uses an 1/O path name which is local to a subprogram and
the TRANSFER has not completed by the time the context is exited, returning to the
original context will be deferred until the end of the TRANSFER; at that time the ON
EOT event cannot be serviced. To ensure that the event will be serviced, a statement
that cannot be executed in overlap with the TRANSFER must be executed before leaving
the context. A WAIT FOR EOT @Non_buf statement is used for this purpose.

The most recent ON EOT (or OFF EOT) definition for a given path name overrides any
previous ON EOT definition. If the overriding ON EOT definition occurs in a context
different from the one in which the overridden ON EOT occurs. the overridden ON EOT
is restored when the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON EOT can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON EOT
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EOT
statement. CALL and GOSUB will return to the next line that would have been executed
if the EOT event had not been serviced, and the system priority is restored to that which
existed before the ON EOT branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON EOT statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated

call. GOSUB and GOTO remain active when the context changes to a subprogram, but
the branch cannot be taken until the calling context is restored.

ON EOT is disabled by DISABLE and deactivated by OFF EOT.

446 Keyword Dictionary

ON ERROR

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN Yes

This statement defines and enables an event-initiated branch which results from a
trappable error. This allows you to write your own error-handling routines.

GOSUB

subprogram
cALL

Item | Description Range
line label name of a program line any valid name
line number integer constant identifying a program line |1 thru 32766

subprogram
name

Example Statements

ON ERROR GOTO 1200
ON ERROR CALL Report

name of a SUB or CSUB subprogram

any valid name

Keyword Dictionary 447

Semantics

The ON ERROR statement has the highest priority of any event-initiated branch. ON
ERROR can interrupt any event-initiated service routine.

Any specified line label or line number must be in the same context as the ON ERROR
statement. RECOVER forces the program to go directly to the specified line in the
context containing the ON ERROR statement.

Returns via RETURN, SUBEXIT, or SUBEND from ON ERROR GOSUB or ON
ERROR CALL routines are different from regular GOSUB or CALL returns. When ON
ERROR is in effect, the program resumes at the beginning of the line where the error
occurred. If the ON ERROR routine did not correct the cause of the error, the error is
repeated. This causes an infinite loop between the line in error and the error handling
routine. To avoid a retry of the line which caused the error, use ERROR RETURN
instead of RETURN or ERROR SUBEXIT instead of SUBEXIT. When execution returns
from the ON ERROR routine, system priority is restored to that which existed before
the ON ERROR branch was taken.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. In this case, the error is
reported to the user, as if ON ERROR had not been executed.

GOSUB and GOTO do not remain active when the context changes to a subprogram.
If an error occurs, the error is reported to the user, as if ON ERROR had not been
executed.

If an execution error occurs while servicing an ON ERROR CALL or ON ERROR
GOSUB, program execution stops. If an execution error occurs while servicing an ON
ERROR GOTO or ON ERROR RECOVER routine, an infinite loop can occur between
the line in error and the GOTO or RECOVER routine.

If an ON ERROR routine cannot be serviced because inadequate memory is available for
the computer, the original error is reported and program execution pauses at that point.

ON ERROR is deactivated by OFF ERROR. DISABLE does not affect ON ERROR.

448 Keyword Dictionary

ON EXT SIGNAL

Supported On UX
Option Required n/a
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement defines an event-initiated branch to be taken when a system generated
signal is received.

(Con exT sioNaL)—-Insuifn”b";r 'I GoTO
priority H
O |-
RECOVER

CALL

subprogram
name

Item Description Range
signal number numeric expression, rounded to integer (see below)
priority numeric expression, rounded to integer (De- |1 thru 15

fault = 1)
line label name of a program line any valid name
line number integer const identifying a program line 1 thru 32766
subprogram name of a SUB or CSUB any valid name
name

Example Statements

ON EXT SIGNAL 4 GOTO 10
ON EXT SIGNAL Sigusr2,12 GOSUB Fred
ON EXT SIGNAL Sigterm,15 CALL Terminate

Keyword Dictionary 449

Semantics

The ON EXT SIGNAL statement specifies a new action to be taken when a system
generated signal is received by BASIC. If an ON EXT SIGNAL statement is not specified,
then a default system action is be taken. The action for a specific EXT SIGNAL is
specified in the table below. The two possible actions that can be taken are:

Exit BASIC is immediately, but gracefully exited.

Error An error [number to be determined] is generated at the next end-of-line.

All ON EXT SIGNAL actions take place at end-of-line except the default action to exit,
which takes effect imir >diately upon receipt.

BASIC does not allow all system signals to be caught by users. The table below specifies
all system signals, and indicates which can be specified in the EXT SIGNAL statements.
All other values cause an error. This table also specifies the default EXT SIGNAL
handling action which takes place in the absence of an ON EXT SIGNAL, or after an
OFF EXT SIGNAL.

450 Keyword Dictionary

Signal Signal Valid Default
Number Name Signal Action Comment

1 SIGHUP yes exit hangup (lost connection)

2 SIGINT no - BASIC “CLR-I/O” signal

3 SIGQUIT no - BASIC “RESET” signal

4 SIGILL no - illegal instruction

5 SIGTRAP no - BASIC debugging signal

6 SIGIOT yes error software generated (abort)

7 SIGEMT yes error software generated

8 SIGFPE no - floating point execution used in-
ternally by BASIC

9 SIGKILL no - not catchable by anyone

10 SIGBUS no - hardware bus error

11 SIGSEGV no - segmentation violation

12 SIGSYS yes error bad argument to system call

13 SIGPIPE no - write on pipe with no reader

14 SIGALRM yes error system alarm clock
(used by BASIC)

15 SIGTERM yes exit software termination signal

16 SIGUSR1 no - used by BASIC for communica-
tions

17 SIGUSR2 yes error user defined signal

18 SIGCLD no - used by BASIC

19 SIGPWR no - powerfail; never reaches user

20 SIGVTALRM yes error virtual timer alarm

Keyword Dictionary 451

Signal Signal Valid Default

Number Name Signal Action Comment
21 SIGPROF yes error profiling timer alarm
22 SIGIO no - used by BASIC
23 SIGWINDOW no - window /mouse signal
24 SIGSTOP no - not supported on S300
25 SIGTSTP no - not supported on S300
26 SIGCONT no - not supported on S300
27 SIGTTIN no - not supported on S300
28 SIGTTOU no - not supported on S300
29 SIGURG no - urgent condition in I/O
30 - no - not defined for HP-UX
31 - no - not defined for HP-UX
32 - no - not defined for HP-UX

EXT SIGNALS default to and remain enabled unless explicitly disabled with the
DISABLE EXT SIGNAL statement.

The priority of an EXT SIGNAL can be specified in the ON EXT SIGNAL statement,
with the highest priority represented by 15. The highest priority is less than the priority
for ON ERROR, ON END, and ON TIMEOUT. ON EXT SIGNAL can interrupt service
routines of other event-initiated branches which have user-definable priorities, if the ON
EXT SIGNAL priority is higher than the priority of the service routine (the current
system priority). CALL and GOSUB service routines get the priority specified in the
ON... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EXT
SIGNAL statement. CALL and GOSUB return to the next line that would have
been executed if the EXT SIGNAL event had not been serviced, and the system
priority is restored to that which existed before the ON EXT SIGNAL branch was
taken. RECOVER forces the program to go directly to the specified line in the context
containing that ON EXT SIGNAL statement. When recover forces a change of context,
the system priority is restored to that which existed in the original (defining) context at
the time that context was exited.

452 Keyword Dictionary

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON EXT SIGNAL is disabled by DISABLE EXT SIGNAL or DISABLE and deactivated
by OFF EXT SIGNAL.

The current state of the system signal handling can be determined through the STATUS
statement. EXT SIGNALS use the pseudo-select code 33 for providing status infor-
mation. For each EXT SIGNAL, a status register exists with the same number, and
providing the following information:

Status
Number Comment
-1 signal not catchable by user
0 signal disabled
signal enabled

Thus to determine the state of the SIGTERM (15) signal,

STATUS 33,15;A
When an EXT SIGNAL is enabled, and there is no ON EXT SIGNAL setup for it and
the default action is an error , a program error is generated if a program is running,

or if in a keyboard command (including EXECUTE). If a program is running, an ON
ERROR statement can catch the error.

When BASIC is idle (not running a program and not executing a keyboard command) all
EXT SIGNALS except SIGHUP and SIGTERM are ignored. SIGHUP and SIGTERM
exit if they are enabled.

Note that all EXT SIGNALSs default to being enabled.

Keyword Dictionary 453

ON HIL EXT

Supported On WS, UX
Option Required KBD
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement enables an end-of-line interrupt in response to receiving data from HIL
devices whose poll records are not otherwise being processed by the BASIC system.

(on HIL ExT)+

address

|
mask r

O
subprogram
name
Range
Item Description/Default Restrictions

address mask the sum of 2 raised to the power of each any even number

of the addresses of the desired devices; from 2 to 254

Default = 254
priority numeric expression, rounded to a integer; 1 thru 15

Default = 1
line label name of a program line any valid name
line number integer constant identifying a program line 1 thru 32 766
subprogram name of a SUB or CSUB subprogram any valid name
name

Example Statement

ON HIL EXT 8 GOSUB Ser_routine
ON HIL EXT Mask,Priority CALL Sub_prog
ON HIL EXT 2,3 GOTO Label_1

454 Keyword Dictionary

Semantics

The address mask provides the capability of being able to enable polling of several devices
using the same ON HIL EXT statement. This mask is obtained by raising 2 to the power
of each of the addresses of desired devices, and adding these values. Suppose you want
to create a mask which would allow interrupts from HP-HIL devices at addresses 1 and
3. You would take 2 and raise it to the first power and add this result to 2 raised to
the third power; the final result is a mask value of 10. This indicates that end-of-line
interrupts can be received from HP-HIL devices at addresses 1 and 3 in the HP-HIL link.
Note that the default mask is 254 (all devices in the link).

While interrupts are enabled, poll records are accumulated and returned via the
HILBUF$ function. If the HIL SEND statement results in data being returned from
the device, the data is put into HILBUF$ even if HP-HIL interrupts are not enabled
(i.e. ON HIL EXT is not currently active). Note that no interrupt is generated, even if
HP-HIL interrupts are enabled (i.e. ON HIL EXT is currently active), for data placed
in HILBUF$ as a result of HIL SEND. However, care should be taken in this case, since
executing ON HIL EXT clears HILBUF$.

HP-HIL devices which can use the ON HIL EXT statement are those whose poll records
are not being processed for another purpose by the BASIC system or the Keyboard
controller. These devices are grouped into two categories:

e Absolute positioning devices which are not the current GRAPHICS INPUT device.
Examples of these devices are as follows: Touchscreen (HP 35723A), A-size Digitizer
(HP 46087A), B-size Digitizer (HP 46088A). Note that both digitizers return data
too fast to be processed using the HILBUF$ function; therefore, it is best to use
the GRAPHICS INPUT IS statement with these devices along with the READ
LOCATOR or DIGITIZE statement.

e HP-HIL devices with Device ID’s less than hexadecimal 60. Examples of these
devices are as follows: Bar-code Reader (HP 92916A), ID Module (HP 46084A),
Function Box (HP 46086A), Vectra Keyboard (HP 46030A).

Keyword Dictionary 455

The main HP-HIL devices which cannot use this function are:

e Relative pointing devices, such as the HP Mouse (HP 46060A) and Control Dial
Box (HP 46085A). Since the HP 98203C keyboard has a knob on it, it is considered
a relative pointing device.

o Current GRAPHICS INPUT devices.

e All system Keyboards (includes HP 98203C as well as HP 46020/21A). Their poll
records are processed by the Keyboard controller and the keycodes returned to
BASIC via a different interface.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON HIL EXT can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON HIL
EXT priority is higher than the priority of the service routine (the current system
priority). CALL and GOSUB service routines get the priority specified in the ON...
statement which set up the branch that invoked them. The system priority is not changed
when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON HIL
EXT statement. CALL and GOSUB will return to the next line that would have been
executed if the HIL EXT event had not been serviced, and the system priority is restored
to that which existed before the ON HIL EXT branch was taken. RECOVER forces the
program to go directly to the specified line in the context containing the ON HIL EXT
statement. When RECOVER forces a change of context, the system priority is restored
to that which existed in the original (defining) context at the time that context was
exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

The most recent ON HIL EXT (or OFF HIL EXT) overrides any previous ON HIL EXT
definition. If the overriding ON HIL EXT occurs in another context (such as in a SUB
subprogram), then the overridden ON HIL EXT branch is restored when the calling
context is restored. (See below for restrictions.)

ON HIL EXT is deactivated by OFF HIL EXT.

456 Keyword Dictionary

The ON HIL EXT statement behaves like the ON CDIAL and ON KNOB statements:

e When ON HIL EXT is executed in a SUB context and program control exits that
context, the data from the enabled devices will continue to be accumulated (and
can be read by HILBUF$—unless lost due to buffer overflow). No interrupts occur
if there is no ON HIL EXT active in the current context.

e Conversely, if an ON HIL EXT has been executed in a context and the OFF HIL
EXT is executed in a called context, upon returning to the calling context, the dat

is not accumulated for HILBUF$ and no interrupts will be initiated.

)

If ON HIL EXT is executed in a context with one mask value, and then another ON
HIL EXT is executed in a called context with a different mask value, the former mask
value is not restored on return to the calling context. This behavior is similar to the
time parameters of ON CYCLE and ON DELAY.

Keyword Dictionary 457

ON INTR

Supported On WS, UX
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement defines an event-initiated branch to be taken when an interface card

generates an interrupt.
INTR statement.

The interrupts must be explicitly enabled with an ENABLE

(on INTR = aTeet 2ce. |

()

subprogram
name

{ 6070)} [Tine] {
A

Item Description Range
interface select numeric expression, rounded to an integer |5, 7 thru 31
code
priority numeric expression, rounded to an integer; |1 thru 15
Default=1
line label name of a program line any valid name

line number

subprogram
name

Example Statements

ON INTR 7 GOSUB 500
ON INTR Isc,4 CALL Service

458 Keyword Dictionary

integer constant identifying a program line

name of a SUB or CSUB subprogram

1 thru 32 766

any valid name

Semantics

The occurrence of an interrupt performs an implicit DISABLE INTR for the interface.
An ENABLE INTR must be performed to re-enable the interface for subsequent event-
initiated branches. Another ON INTR is not required, nor must the mask for ENABLE
INTR be redefined.

The priority can be specified, with highest priority represented by 15. The highest priority
is less than the priority for ON ERROR, ON END, and ON TIMEOUT. ON INTR can
interrupt service routines of other event-initiated branches which have user-definable
priorities, if the ON INTR priority is higher than the priority of the service routine (the
current system priority). CALL and GOSUB service routines get the priority specified
in the ON... statement which set up the branch that invoked them. The system priority
is not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON INTR
statement. CALL and GOSUB will return to the next line that would have been executed
if the INTR event had not been serviced, and the system priority is restored to that which
existed before the ON INTR branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON INTR statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON INTR is disabled by DISABLE INTR or DISABLE and deactivated by OFF INTR.

ON INTR and OFF INTR statements may be executed for any I/O card in the machine.
It is not necessary to have a driver for the card.

Keyword Dictionary 459

ON KBD

This statement defines and enables an event-initiated branch to be taken when a key is

pressed.

Supported On
Option Required
Keyboard Executable
Programmable

In an IF...THEN

(" oN kBD)

ALL

oS

b
L(CALL)——D Pod > —

Item Description Range
priority numeric expression, rounded to an integer; |1 thru 15
Default = 1
line label name of a program line any valid name

line number

subprogram
name

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements

ON KBD GOSUB 770

ON KBD,9 CALL Get_key

460 Keyword Dictionary

1 thru 32766

any valid name

Semantics

Specifying the secondary keyword ALL causes all keys except [RESET], [SHIFT], and [CTRL]
to be trapped. When ALL is omitted, the untrapped keys are those just mentioned, the
softkeys, (PAUSE], [STOP), (CLR_1/0), [Break], (System], (User], [Menu), and (Shift] (Menu). When
not trapped, these keys perform their normal functions. When the softkeys are trapped,
ON KBD branching overrides any ON KEY branching.

A keystroke triggers a keyboard interrupt and initiates a branch to the specified routine
when priority allows. If keystrokes occur while branching is held off by priority, the
keystrokes are stored in a special buffer. When keystrokes are in the buffer, branching
will occur when priority allows. This buffer is read and cleared by the KBD$ function
(see the KBDS$ entry).

Knob rotation will generate ON KBD interrupts unless an ON KNOB statement
has been executed. Clockwise rotation of the knob produces right-arrow keystrokes;
counterclockwise rotation produces left-arrow keystokes. If the key is pressed
while turning the knob, then clockwise rotation of the knob produces up-arrow keystrokes;
counterclockwise rotation produces down-arrow key strokes. Since one rotation of the
knob is equivalent to 20 keystrokes (more with HP-HIL knobs), keyboard buffer overflow
may occur if the BASIC service routine does not process the keys rapidly.

Live keyboard, editing, and display control functions are suspended during ON KBD. To
restore a key’s normal function the keystroke may be OUTPUT to select code 2.

The most recent ON KBD (or OFF KBD) definition overrides any previous ON KBD
definition. If the overriding ON KBD definition occurs in a context different from the
one in which the overridden ON KBD occurs, the overridden ON KBD is restored when
the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON KBD can interrupt sevice
routines of other event-initiated branches with user-definable priorities, if the ON KBD
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Keyword Dictionary 461

Any specified line label or line number must be in the same context as the ON KBD
statement. CALL and GOSUB will return to the next line that would have been executed
if the KBD event had not been serviced, and the system priority is restored to that which
existed before the ON KBD branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON KBD statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON KBD is disabled by DISABLE, deactivated by OFF KBD, and temporarily deacti-
vated when the program is executing LINPUT, INPUT, or ENTER KBD.

You can use a relative pointing device, such as the HP 46060A mouse on an HP-HIL
interface, if the KBD BIN is present.

462 Keyword Dictionary

ON KEY

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN Yes

This statement defines and enables an event-initiated branch to be taken when a softkey
is pressed.

CON KEY H se lkeecyt or

f - TGO
O |)

%CALL) 'l subg;:gr‘am I),

Item Description Range
key selector numeric expression, rounded to an integer |0 thru 23
prompt string expression; —
Default = no label
priority numeric expression, rounded to an integer; |1 thru 15
Default=1
line label name of a program line any valid name
line number integer constant identifying a program line {1 thru 32766
subprogram name of a SUB or CSUB subprogram any valid name
name

Example Statements

ON KEY O GOTO 150
ON KEY 5 LABEL "Print",3 GOSUB Report

Keyword Dictionary 463

Semantics

The most recently executed ON KEY (or OFF KEY) definition for a particular softkey
overrides any previous key definition. If the overriding ON KEY definition occurs in a
context different from the one in which the overridden ON KEY occurs, the overridden
ON KEY is restored when the calling context is restored.

Labels appear in the two bottom lines of the CRT. The label of any key is bound to
the current ON KEY definition. Therefore, when a definition is changed or restored, the
label changes accordingly. If no label is specified, that label field is blank. Refer to the
BASIC Programming Techniques manual for a discussion of these labels.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). On KEY can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON KEY
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KEY
statement. CALL and GOSUB will return to the next line that would have been executed
if the KEY event had not been serviced, and the system priority is restored to that which
existed before the ON KEY branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON KEY statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON KEY is disabled by DISABLE, deactivated by OFF KEY, and temporarily deacti-
vated when the program is paused or executing LINPUT, INPUT, or ENTER KBD.

464 Keyword Dictionary

ON KNOB

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement defines and enables an event-initiated branch to be taken when the knob

is turned.

CON KNOBHseconus =

osErzm

»{(GOTO }

GOosuB

line
= label l -'
line
number

—(caLL }—

subprogram
name

Item Description Range
seconds numeric expression, rounded to the nearest [0.01 thru 2.55
0.01 second
priority numeric expression, rounded to an integer; |1 thru 15
Default=1
line label name of a program line any valid name

line number

subprogram
name

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements

ON KNOB .1 GOSUB 250
ON KNOB .333,Priority CALL Pulses

1 thru 32 766

any valid name

Keyword Dictionary 465

Semantics

Turning the knob (cursor wheel) generates pulses. After ON KNOB is activated (or re-
activated), the first pulse received starts a sampling interval. The “seconds” parameter
establishes the length of that sampling interval. At the end of the sampling interval,
the ON KNOB branch is taken if the net number of pulses received during the interval
is not zero and priority permits. The KNOBX and KNOBY functions can be used to
determine the number of pulses received during the interval. If the ON KNOB branch is
held off for any reason, the KNOBX and KNOBY functions accumulate the pulses (see
KNOBX and KNOBY).

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON KNOB can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON KNOB
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KNOB
statement. CALL and GOSUB will return to the next line that would have been executed
if the KNOB event had not been serviced, and the system priority is restored to that
which existed before the ON KNOB branch was taken. RECOVER forces the program
to go directly to the specified line in the context containing that ON KNOB statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

The most recent ON KNOB (or OFF KNOB) definition overrides any previous ON
KNOB definition. If the overriding ON KNOB definition occurs in a context different
from the one in which the overridden ON KNOB occurs, the overridden ON KNOB is
restored when the calling context is restored, but the “seconds” parameter of the more
recent ON KNOB remains in effect. (See below for restrictions.)

ON KNOB is disabled by DISABLE and deactivated by OFF KNOB.

466 Keyword Dictionary

You can use an HP-HIL relative pointing device, such as a mouse or knob, if the KBD
binary is loaded.

The ON KNOB statement behaves like the ON CDIAL and ON HIL EXT statements:

e When ON KNOB is executed in a SUB context and program control exits that
context, the pulses from control dials will continue to be accumulated (and can
be read by KNOBX and KNOBY). No interrupts occur if there is no ON KNOB
active in the current context.

e Conversely, if an ON KNOB has been executed in a context and then OFF KNOB
is executed in a called context, then upon returning to the calling context the
pulses will be routed to the BASIC system (instead of the KNOBX and KNOBY
functions) and no interrupts will be initiated.

Keyword Dictionary 467

ON SIGNAL

Supported On WS, UX
Option Required 10
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement defines and enables an event-initiated branch to be taken when a SIGNAL
statement with the same signal selector is executed.

CEE S BeE

Item

subprogram
name

Description Range

signal selector

priority

line label
line number

suprogram narme

numeric expression, rounded to an integer |0 thru 15

numeric expression, rounded to an integer; |1 thru 15
Default = 1

name of a program line any valid name
integer constant identifying a program line |1 thru 32766

name of a SUB or CSUB subprogram any valid name

Example Statements

ON SIGNAL 5 GOSUB 550
ON SIGNAL Bailout,15 RECOVER Bail_here

468 Keyword Dictionary

Semantics

The most recent ON SIGNAL (or OFF SIGNAL) definition for a given signal selector
overrides any previous ON SIGNAL definition. If the overriding ON SIGNAL definition
occurs in a context different from the one in which the overridden ON SIGNAL occurs,
the overridden ON SIGNAL is restored when the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and
ON TIMEOUT (whose priorities are not user-definable). ON SIGNAL can interrupt
service routines of other event-initiated branches with user-definable priorities, if the ON
SIGNAL priority is higher than the priority of the service routine (the current system
priority). CALL and GOSUB service routines get the priority specified in the ON...
statement which set up the branch that invoked them. The system priority is not changed
when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON SIGNAL
statement. CALL and GOSUB will return to the next line that would have been executed
if the SIGNAL event had not been serviced, and the system priority is restored to that
which existed before the ON SIGNAL branch was taken. RECOVER forces the program
to go directly to the specified line in the context containing that ON SIGNAL statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO

remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON SIGNAL is disabled by DISABLE and deactivated by OFF SIGNAL.

Keyword Dictionary 469

ON TIME

This statement defines and enables an event-initiated branch to be taken when the real-

Supported On
Option Required

Keyboard Executable
Programmable
In an IF...THEN

time clock reaches a specified time.

(oN T1ME }—+ seconus |—

O]

line label

line number

subprogram
name

Item Description Range
seconds numeric expression, rounded to the nearest | 0 thru 86 399.99
0.02 second
priority numeric expression, rounded to an integer; |1 thru 15
Default = 1
line label name of a program line any valid name

line number

subprogram
name

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements

ON TIME 3600*8 GOTO Work
ON TIME (TIMEDATE+3600) MOD 86400 CALL One_hour

470 Keyword Dictionary

1 thru 32766

any valid name

WS,UX
CLOCK

Semantics

The most recent ON TIME (or OFF TIME) definition overrides any previous ON TIME
definition. If the overriding ON TIME definition occurs in a context different from the
one in which the overridden ON TIME occurs, the overridden ON TIME is restored when
the calling context is restored, but the time value of the more recent ON TIME remains
in effect.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON TIME can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON TIME
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

CALL and GOSUB will return to the next line that would have been executed if the
TIME event had not been serviced, and the system priority is restored to that which
existed before the ON TIME branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON TIME statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

Any specified line label or line number must be in the same context as the ON
TIME statement. CALL and RECOVER remain active when the context changes to
a subprogram, unless the change in context is caused by a keyboard-originated call.
GOSUB and GOTO remain active when the context changes to a subprogram, but the
branch cannot be taken until the calling context is restored.

Unlike ON CYCLE, an ON TIME statement requires an exact match between the clock
and the time specified in the defining statement. If the event was missed and not logged,
re-executing the ON TIME statement will not result in a branch being taken.

ON TIME is disabled by DISABLE and deactivated by OFF TIME.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASIC/UX is started for the timer.

Keyword Dictionary 471

ON TIMEOUT

This statement defines and enables an event-initiated branch to be taken when an I/O

Supported On
Option Required
Keyboard Executable
Programmable

In an IF...THEN

timeout occurs on the specified interface.

(on TIMEOUT)|

interface

Item

Description

subprogram
name

Range

interface select
code

seconds

line label
line number

subprogram
name

numeric expression, rounded to an integer

numeric expression, rounded to the nearest
0.001 second

name of a program line
integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statements

ON TIMEOUT, 2.554 GOTQO 770
ON TIMEOUT Printer,Time GOSUB Message

472 Keyword Dictionary

7 thru 31

0.001 thru 32.767

any valid name
1 thru 32766

any valid name

Semantics

There is no default system timeout. If ON TIMEOUT is not in effect for an interface, a
device can cause the program to wait forever.

The specified branch occurs if an input or output is active on the interface and the
interface has not responded within the number of seconds specified. The computer waits
at least the specified time before generating an interrupt; however, it may wait up to an
additional 25% of the specified time.

Timeouts apply to ENTER and OUTPUT statements, and operations involving the
PRINTER IS, PRINTALL IS, and PLOTTER IS devices when they are external.
Timeouts do not apply to CONTROL, STATUS, READIO, WRITEIO, CRT alpha or
graphics 1/0, real time clock 1/0, keyboard I/O, or mass storage operations.

The priority associated with ON TIMEOUT is higher than priority 15. ON END and ON
ERROR have the same priority as ON TIMEOUT, and can interrupt an ON TIMEOUT
service routine.

Any specified line label or line number must be in the same context as the ON TIMEOUT
statement. CALL and GOSUB will return to the line immediately following the one
during which the timeout occurred, and the system priority is restored to that which
existed before the ON TIMEOUT branch was taken. RECOVER forces the program to
go directly to the specified line in the context containing that ON TIMEOUT statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO do
not remain active when the context changes to a subprogram. The TIMEOUT event
does remain active. Unlike other ON events, TIMEOUTs are never logged, they always
cause an immediate action. If a TIMEOUT occurs when the ON TIMEOUT branch
cannot be taken, an error 168 is generated. This can be trapped with ON ERROR. The
functions ERRN and ERRDs are set only when the error is generated. They are not set
when the ON TIMEOUT branch can be taken.

ON TIMEOUT is deactivated by OFF TIMEOUT. DISABLE does not affect ON
TIMEOUT.

Keyword Dictionary 473

ON TIMEOUT with SRM Interfaces

With SRM, ON TIMEOUT defines and enables a branch resulting from an I/O timeout
on the specified SRM interface. Although ON TIMEOUT is supported on SRM, its use
should be avoided because the asynchronous nature of the SRM system does not allow
predictable results.

A TIMEOUT occurring during statements such as RE-SAVE and RE-STORE may leave
a temporary file on the mass storage device. The file’s name is a 10-character identifier
(the first character is an alpha character, the rest are digits) derived from the value of
the workstation’s real-time clock when the TIMEOUT occurred. You may wish to check
the contents of any such file before purging.

BASIC/UX Specifics
If the interface is a MUX, the interface select code must be a device selector with channel
number included. For example,

e ON TIMEOUT 16 gives an error.

e ON TIMEOUT 1600 works.

474 Keyword Dictionary

OPTION BASE

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF... THEN No

This statement specifies the default lower bound of arrays.

OPTION BASE

Example Statements

OPTION BASE O
OPTION BASE 1

Semantics

This statement can occur only once in each context. If used, OPTION BASE must
precede any explicit variable declarations in a context. Since arrays are passed to
subprograms by reference, they maintain their original lower bound, even if the new
context has a different OPTION BASE. Any context that does not contain an OPTION
BASE statement assumes default lower bounds of zero.

The OPTION BASE value is determined at prerun, and is used with all arrays declared
without explicit lower bounds in COM, DIM, INTEGER, and REAL statements as well
as with all implicitly dimensioned arrays. OPTION BASE is also used at runtime for
any arrays declared without lower bounds in ALLOCATE.

OPTIONAL

See the DEF FN and SUB statements.

Keyword Dictionary 475

OR

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This operator returns a 1 or a 0 based on the logical inclusive-or of the arguments.

numeric OR numeric
expression expression

Example Statements

X=Y OR Z
IF File_type OR Device THEN Process

Semantics

An expression which evaluates to a non-zero value is treated as a logical 1. An expression
must evaluate to zero to be treated as a logical 0.

The truth table is:

A|B|AORB
010 0
0 j1 1
110 1
1|1 1

476 Keyword Dictionary

OUTPUT

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement outputs items to the specified destination.

(OUTPUT)——I destination }

Expanded diagram: destination image items
A A

r N r N

Y

image line
number
. image line .
label
image

specifier

record

number
device
selector

destination
string name

(o

subscript

string
expression

string
array name (*)) .
numeric
expression
trailing puntuation
numeric not allowed with USING
array name (%)

literal form of image specifier

output items
A

@

image
specifier list

] .(ll)
image
specifier list

Keyword Dictionary 477

Item

Description

Range

I/0 path name

record number
device selector

destination string
name

subscript

image line
number

image line label
image specifier

string array name

numeric array
name

image specifier
list

repeat factor

literal

name assigned to a device, devices, mass

storage file, buffer, or pipe
numeric expression, rounded to an integer
numeric expression, rounded to an integer

name of a string variable

numeric expression, rounded to an integer
integer constant identifying an IMAGE
statement

name identifying an IMAGE statement

string expression

name of a string array
name of a numeric array
literal

integer constant

string constant composed of characters from
the keyboard, including those generated us-

ing the ANY CHAR key

478 Keyword Dictionary

any valid name

1 thru 231—1
(see Glossary)

any valid name

—32 767 thru +32 767
(see “array” in Glossary)

1 thru 32766

any valid name
(see drawing)

any valid name
any valid name
(see next drawing)

1 thru 32767

quote mark not allowed

image specifier list

©OHOOO0

repeat
factor

ESZZ

ESZZZ

0995

Radix specifier cannot
be used without a
digit specif.ier

‘ L OC J

Keyword Dictionary 479

Example Statements

OUTPUT 701 ;Number,String$;

OUTPUT @File;Array(*),END

QUTPUT @Rand,5 USING Fmti;Item(5)
OUTPUT 12 USING "#,6A";B$[2;6]
OUTPUT @Printer;Rank;Id;Name$

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If
the absolute value of the number is greater than or equal to 1E-4 and less than 1E+6, it
is rounded to 12 digits and displayed in floating point notation. If it is not within these
limits, it is displayed in scientific notation. The standard numeric format is used unless
USING is selected, and may be specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers. The separator following the
item is also used as the separator between the real and imaginary parts.

Arrays

Entire arrays may be output by using the asterisk specifier. Each element in an array
is treated as an item by the OUTPUT statement, as if the items were listed separately,
separated by the punctuation following the array specifier. If no punctation follows the
array specifier, a comma is assumed. The array is output in row major order (rightmost
subscript varies fastest). COMPLEX arrays are treated as if they were REAL arrays
with twice as many elements.

Files as Destination

If an I/O path has been assigned to a file, the file may be written to with QUTPUT
statements. The file must be an ASCII, BDAT, or HP-UX file. The attributes specified
in the ASSIGN statement are used if the file is a BDAT or HP-UX file (ASCII files are
always assigned a special case of the FORMAT ON attribute).

Serial access is available for ASCII, BDAT, and HP-UX files. Random access is available
for BDAT and HP-UX files. The end-of-file marker (EOF) and the file pointer are
important to both serial and random access. The file pointer is set to the beginning of
the file when the file is opened by an ASSIGN. It is updated by OUTPUT operations so
that it always points to the next byte to be written.

480 Keyword Dictionary

The EOF pointer is read from the media when the file is opened by an ASSIGN. On a
newly created file, EOF is set to the beginning of the file. After each OUTPUT operation,
the EOF pointer in the I/O path table is updated to the maximum of the file pointer
or the previous EOF value. The EOF pointer on the volume is updated at the following
times:

e When the current end-of-file changes.
e When END is specified in an QUTPUT statement directed to the file.

e When a CONTROL statement directed to the I/O path name changes the position
of the EOF.

Random access uses the record number parameter to write items to a specific location
in a file. The OUTPUT begins at the start of the specified record and must fit into one
record. The record specified cannot be beyond the record containing the EOF, if EOF
is at the first byte of a record. The record specified can be one record beyond the record
containing the EOF, if EOQF is not at the first byte of a record. Random access is always
allowed to records preceding the EOF record. If you wish to write randomly to a newly
created file, either use a CONTROL statement to position the EOF in the last record,
or write some “dummy” data into every record.

When data is written to an ASCII file, each item is sent as an ASCII representation with
a 2-byte length header. You cannot use OUTPUT with USING to ASCII files; see the
following section, “OUTPUT with USING” for details.

Data sent to a BDAT or HP-UX file is sent in internal format if FORMAT OFF is
currently assigned to the I/O path (this is the default FORMAT attribute for these file
types), and is sent as ASCII characters if FORMAT ON has been explicitly assigned.
(See “Devices as Destination” for a description of these formats.)

OUTPUT to HFS Files

You must have W (write) permission on an HFS file, as well as X (search) permission on
all superior directories, to output data to the file. If you do not have these permissions,
error 183 is reported.

HF'S files are extensible. If the data output to the file with this statement would overflow
the file’s space allocation, the file is extended. The BASIC system allocates the additional
space needed to store the data being output, provided the disc contains enough unused
storage space.

Keyword Dictionary 481

OUTPUT to SRM Files

You must have W (write) access capability on an SRM file, as well as R (read) capability
on all superior directories, to output data to the file. If this capability is not public or if
a password protecting this capability was not used at the time the file was assigned an
I/0 path name (with ASSIGN), error 62 is reported.

SRM files are extensible. If the data output to the file with this statement would overflow
the file’s space allocation, the file is extended. The BASIC system allocates an additional
“extent size” amount of space, provided the disc contains enough unused storage space;
see one of the CREATE statements for a description of “extent size”.

Devices as Destination

An I/0O path or a device selector may be used to direct QUTPUT to a device. If a
device selector is used, the default system attributes are used (see ASSIGN). If an I/O
path is used, the ASSIGN statement used to associate the 1/O path with the device
also determines the attributes used. If multiple listeners were specified in the ASSIGN,
the OUTPUT is directed to all of them. If FORMAT ON is the current attribute, the
items are sent in ASCII. Items followed by a semicolon are sent with nothing following
them. Numeric items followed by a comma are sent with a comma following them. String
items followed by a comma are sent with a CR/LF following them. If the last item in
the OUTPUT statement has no punctuation following it, the current end-of-line (EOL)
sequence is sent after it. Trailing punctuation eliminates the automatic EOL.

If FORMAT OFF is the current attribute, items are sent to the device in internal format.
Punctuation following items has no effect on the OUTPUT. Two bytes are sent for each
INTEGER, eight bytes for each REAL, and sixteen bytes for each COMPLEX value.
Each string output consists of a four byte header containing the length of the string,
followed by the actual string characters. If the number of characters is odd, an additional
byte containing a blank is sent after the last character.

CRT as Destination

If the device selector is 1, the OUTPUT is directed to the CRT. OUTPUT 1 and PRINT
differ in their treatment of separators and print fields. The OUTPUT format is described
under “Devices as Destination.” See the PRINT keyword for a discussion of that format.
OUTPUT 1 USING and PRINT USING to the CRT produce similar actions.

482 Keyword Dictionary

Keyboard as Destination

Outputs to device selector 2 may be used to simulate keystrokes. ASCII characters can
be sent directly (i.e. “hello”). Non-ASCII keys (such as (EXECUTE]) are simulated by a
two-byte sequence. The first byte is CHR$(255), and the second byte can be found in
the “Second Byte of Non-ASCII Key Sequences” table in the back of this book.

When simulating keystrokes, unwanted characters (such as the EOL sequence) can be
avoided with an image specifier (such as “#,B” or “#,K"). See “OUTPUT with USING.”

Strings as Destination

If a string is used for the destination, the string is treated similarly to a file. However,
there is no file pointer; each OUTPUT begins at the beginning of the string, and writes
serially within the string.

Buffers as Destination (Requires TRANS)

When the destination is an I/O path name assigned to a buffer, data is placed in the
buffer beginning at the location indicated by the buffer’s fill pointer. As data is sent, the
current number-of-bytes

register and fill pointer are adjusted accordingly. Encountering the empty pointer (buffer
full) produces an error unless a continuous outbound TRANSFER is emptying the buffer.
In this case, the OUTPUT will wait until there is more room in the buffer for data.

If an 1/O path is currently being used in an inbound TRANSFER, and an OUTPUT
statement uses it as a destination, execution of the OUTPUT is deferred until the
completion of the TRANSFER. An OUTPUT can be concurrent with an outbound
TRANSFER only if the destination is the I/O path assigned to the buffer.

An OUTPUT to a string variable that is also a buffer will not update the buffer’s pointers
and will probably corrupt the data in the buffer.

Pipes as Destination (BASIC/UX only)

If an I/O path has been assigned to a pipe, the pipe may be written to with OUTPUT
statements. The attributes specified in the ASSIGN statement are used. Data is sent
in internal format if FORMAT OFF is currently assigned to the I/O path, and is sent
as ASCII characters if FORMAT is currently assigned (this is the default FORMAT
attribute). (See “Devices as Destination” for a description of these formats.)

Keyword Dictionary 483

Using END with Devices

The secondary keyword END may be specified following the last item in an OUTPUT
statement. The result, when USING is not specified, is to suppress the EOL (End-of-
Line) sequence that would otherwise be output after the last byte of the last item. If a
comma is used to separate the last item from the END keyword, the corresponding item
terminator is output (CR/LF for string items or comma for numeric items).

With HP-IB interfaces, END specifies an EOI signal to be sent with the last data byte
of the last item. However, if no data is sent from the last output item, EOI is not sent.
With Data Communications interfaces, END specifies an end-of-data indication to be
sent with the last byte of the last output item.

OUTPUT With USING

When the computer executes an OUTPUT USING statement, it reads the image specifier,
acting on each field specifier (field specifiers are separated from each other by commas) as
it is encountered. If nothing is required from the output items, the field specifier is acted
upon without accessing the output list. When the field specifier requires characters, it
accesses the next item in the output list, using the entire item. Each element in an array
is considered a separate item.

The processing of image specifiers stops when there is no matching display item (and the
specifier requires a display item). If the image specifiers are exhausted before the display
items, they are reused, starting at the beginning.

COMPLEX values require two REAL image specifiers (i.e. each COMPLEX value is
treated like two REAL values).

If a numeric item requires more decimal places to the left of the decimal point than are
provided by the field specifier, an error is generated. A minus sign takes a digit place if M
or S is not used, and can generate unexpected overflows of the image field. If the number
contains more digits to the right of the decimal point than specified, it is rounded to fit
the specifier.

If a string is longer than the field specifier, it is truncated, and the right-most characters
are lost. If it is shorter than the specifier, trailing blanks are used to fill out the field.

OUTPUT with USING cannot be used with output to ASCII files. Instead, direct the
OUTPUT with USING to a string variable, and then QOUTPUT this variable to the
file. For instance, OUTPUT String$ USING "5A,X,6D.D";Chars$,Number and then OUTPUT
Q@File;String$.

484 Keyword Dictionary

Effects of the image specifiers on the OUTPUT statement are shown in the following

table:
Image
Specifier Meaning

K Compact field. Outputs a number or string in standard form with no leading or

trailing blanks.
-K Same as K.

H Similar to K, except the number is output using the European number format
(comma radix). (Requires 10)

—-H Same as H. (Requires 10)

S Outputs the number’s sign (+ or —).

M Outputs the number’s sign if negative, a blank if positive.

D Outputs one digit character. A leading zero is replaced by a blank. If the number
is negative and no sign image is specified, the minus sign will occupy a leading digit
position. If a sign is output, it will “float” to the left of the left-most digit.

Z Same as D, except that leading zeros are output.

* Like D, except that asterisks are output instead of leading zeros. (Requires 10)
Outputs a decimal-point radix indicator.

R Outputs a comma radix indicator (European radix). (Requires I10)

E Outputs an E, a sign, and a two-digit exponent.

ESZ Outputs an E, a sign, and a one-digit exponent.
ESZZ Same as E.
ESZZZ |Outputs an E, a sign, and a three-digit exponent.

A Outputs a string character. Trailing blanks are output if the number of characters
specified is greater than the number available in the corresponding string. If
the image specifier is exhausted before the corresponding string, the remaining
characters are ignored.

X Outputs a blank.

literal Outputs the characters contained in the literal.
B Outputs the character represented by one byte of data. This is similar to the CHR$

function. The number is rounded to an INTEGER and the least-significant byte is
sent. If the number is greater than 32 767, then 255 is used; if the number is less
than —32 768, then 0 is used.

Keyword Dictionary 485

Image
Specifier

Meaning

w

%

Outputs a 16-bit word as a two’s-complement integer. The corresponding numeric
item is rounded to an INTEGER. If it is greater than 32 767, then 32 767 is sent;
if it is less than —32 768, then —32768 is sent. If either an I/O path name with
the BYTE attribute or a device selector is used to access an 8-bit interface, two
bytes will be output; the most-significant byte is sent first. If an I/O path name
with the BYTE attribute is used to access a 16-bit interface, the BYTE attribute is
overridden, and one word is output in a single operation. If an I/O path name with
the WORD attribute is used to access a 16-bit interface, a null pad byte is output
whenever necessary to achieve alignment on a word boundary. If the destination is
a BDAT file, string variable, or buffer, the BYTE or WORD attribute is ignored
and all data are sent as bytes; however, pad byte(s) will be output when necessary
to achieve alignment on a word boundary. The pad character may be changed by
using the CONVERT attribute; see the ASSIGN statement for further information.

Like W, except that no pad bytes are output to achieve word alignment. If an
I/0O path with the BYTE attribute is used to access a 16-bit interface, the BYTE
attribute is not overridden (as with the W specifier above). (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the
last output item.

Ignored in OUTPUT images.

Changes the automatic EOL sequence that normally follows the last output item
to a single carriage-return. (Requires I0)

Changes the automatic EOL sequence that normally follows the last output item
to a single line-feed. (Requires 10)

Outputs a carriage-return and a line-feed.

Outputs the current end-of-line (EOL) sequence. The default EOL characters are
CR and LF; see ASSIGN for information on re-defining the EOL sequence. If the
destination is an I/O path name with the WORD attribute, a pad byte may be
sent after the EOL characters to achieve word alignment.

Outputs a form-feed.

486 Keyword Dictionary

END with OUTPUT...USING

Using the optional secondary keyword END in an OUTPUT...USING statement produces
results which differ from those in an OUTPUT statement without USING. Instead
of always suppressing the EOL sequence, the END keyword only suppresses the EOL
sequence when no data is output from the last output item. Thus, the # image specifier
generally controls the suppression of the otherwise automatic EOL sequence.

With HP-IB interfaces, END specifies an EOI signal to be sent with the last byte output.
However, no EOI is sent if no data is sent from the last output item or the EOL sequence
is suppressed. With Data Communications interfaces, END specifies an end-of-data
indication to be sent at the same times an EOI would be sent on HP-IB interfaces.

BASIC/UX Specifics

You can specify a window number or unnamed pipe as the output destination to
OUTPUT.

Keyword Dictionary 487

PARITY

See the ASSIGN statement.

488 Keyword Dictionary

PASS CONTROL

Supported On WS, UX
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement is used to pass the capability of Active Controller to a specified HP-IB
device.

PASS CONTROL OESl
g

selector

Item | Description I Range
I/O path name |name assigned to an HP-IB device any valid name
device selector numeric expression, rounded to an integer | must contain primary
address

(see Glossary)

Example Statements

PASS CONTROL 719
PASS CONTROL @Controller_19

Semantics

Executing this statement first addresses the specified device to talk and then sends the
Take Control message (TCT), after which Attention is placed in the False state. The
computer then assumes the role of a bus device (a non-active controller).

The computer must currently be the active controller to execute this statement, and
primary addressing (but not multiple listeners) must be specified.

Keyword Dictionary 489

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
Active TAD TAD
Controller Error ICcT Error TCT
ATN ATN
Not Active
Controller Error

BASIC/UX Specifics

You cannot pass control on an interface containing a swap device or mounted file system.

490 Keyword Dictionary

PAUSE

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement suspends program execution. (Also see TRACE PAUSE.)

Semantics

PAUSE suspends program execution before the next line is executed, until the
key is pressed or CONT is executed. If the program is modified while paused, RUN must
be used to restart program execution.

When program execution resumes, the computer attempts to service any ON INTR
events that occurred while the program was paused. ON END, ON ERROR, or ON
TIMEOUT events generate errors if they occur while the program is paused. ON KEY
and ON KNOB events are ignored while the program is paused.

Pressing the [PAUSE] (or [Stop] on an ITF keyboard) key, or typing PAUSE and pressing
(ExECUTE], (ENTER] or [Return] will suspend program execution at the end of the line
currently being executed.

Keyword Dictionary 491

PDIR

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement specifies the angle with which IPLOT, RPLOT, POLYGON, POLYLINE,
and RECTANGLE output are rotated.

D
Item l Description l Range
angle numeric expression in current units of angle; | —

Default = 0

Example Statements

PDIR 20
PDIR ACS(Side)

Semantics

The rotation is about the local origin of the RPLOT, POLYGON, POLYLINE or
RECTANGLE.

The angle is interpreted as counter-clockwise rotation from the X-axis.

492 Keyword Dictionary

PEN

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement selects a pen value to be used for all subsequent lines. (For information
about PEN as a secondary keyword, see the AREA statement.)

pen
selector

Item | Description | Range

—32768 thru +32 767
(device dependent)

pen selector numeric expression, rounded to an integer

Example Statements

PEN 4
PEN Select
PEN Pen_number(I,J)

Semantics

For devices which support more than one line color (color CRT), or physical pen (external
hard copy plotters), this statement specifies the line color or physical pen to be used for
all subsequent lines until the execution of another PEN statement or until the execution
of a PLOT, IPLOT, RPLOT, or SYMBOL statement with an array argument which
changes the pen color (see Operation Selector 3 of these statements). The sign of the
pen selectors affects the drawing mode.

In color map mode, specifying PEN 14 actually means “write a 14 into the frame buffer.”
The value of the frame buffer specifies the entry in the color map to be used, which in
turn describes the actual color to be used.

The PEN statement can also be used to specify that the current drawing mode is to erase
lines on all devices which support such an operation. This is specified with a negative pen
number. An alternate mode of operation which allows non-dominant and complementing
drawing may be accessed through the GESCAPE function.

Keyword Dictionary 493

When the PEN statement is executed, the pen used is mapped into the appropriate
range, retaining the sign. For example, if you specify pen +8 on a device whose pens
range from —7 through 7, it would actually use pen +1. The formulae used are as follows:

For monochromatic displays:
If pen selector > 0 then use PEN 1 (draw lines)
If pen selector = 0 then use PEN 0 (complement! lines)
If pen selector < 0 then use PEN —1 (erase lines)

For color displays not in COLOR MAP mode, and the HP 98627A.
If pen selector > 0 then use PEN (pen selector — 1) MOD 7 + 1
If pen selector = 0 then use PEN 0 (complement)
If pen selector < 0 then use PEN — ((ABS(pen selector) — 1) MOD 7 + 1)

For color displays in COLOR MAP mode:

If pen selector>0 then use PEN (pen selector — 1) MOD MaxPen + 1

If pen selector=0 then use PEN 0

If pen selector<0 then use PEN — ((ABS(pen selector) — 1) MOD MaxPen + 1)
Where MaxPen is the highest pen number (the lowest is 0). Four planes: MaxPen=15;
six planes: MaxPen=63; eight planes: MaxPen=255.

For an HPGL Plotter: use PEN pen selector

On an HPGL plotter, no checking is done to determine if the requested pen actually
exists. Pen 0 puts away any pen if the plotter supports such an operation.

1 “Complement” means to change the state of pixels; that is, to draw lines where there are none, and to
erase where lines already exist.

494 Keyword Dictionary

Non-Color-Map Mode

The value written into the frame buffer depends not only on what pen is being used, but
whether or not the computer is in color map mode. The colors for the default (non-color
map) mode are given because the color map cannot be changed in this mode.

The meanings of the different pen values are shown in the table below. The pen value
can cause either a 1 (draw), a 0 (erase), no change, or invert the value of each location

in the frame buffer.

Non-Color-Map Mode

Plane 1 Plane 2 Plane 3

Pen | Color (Red) (Green) (Blue)
1 | White 1 1
2 |Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 |Blue 0 0 1
7 Magenta 1 0 1

Drawing with the pen numbers indicated in the above table results in the frame buffer
planes being set to the indicated values. Drawing with the negatives of the pen numbers
while in normal pen mode causes the bits to be cleared where there are 1s in the table.
Drawing with the negatives of the pen numbers while in alternate pen mode causes the
bits to be inverted where there are 1s in the table. In either case, no change will take
place where there are Os in the table. Although complementing lines can be drawn,
complementing area fills cannot be executed.

Positive pen numbers in alternate drawing mode allows non-dominant drawing. (Non-
dominant drawing causes the values in the frame buffer to be inclusively ORed with the
value of the pen.) Pen 0 in normal mode complements. Pen 0 in alternate mode draws in
the background color. Since the table represents the computer in non-color map mode,
table entries for any additional frame buffer planes are all zeros.

Keyword Dictionary 495

Color Map Mode

When operating the color display in color map mode, pen colors can be redefined at will.
For this reason, no colors are mentioned in the following table. Unlike non-color-map
mode, the fourth bit in the frame buffer is used when in color map mode. Also, memory
planes 1, 2, and 3 are not associated with red, green, and blue.

Drawing with a pen merely puts the pen number into that pixel’s location. The computer
looks into the corresponding entry in the color map to determine what the actual color
the pixel is to exhibit.

Pen Action Plane 1|Plane 2|Plane 3|Plane 4

0 | Background 0 0 0 0
1 |[Draw Pen 1 1 0 0 0
2 | Draw Pen 2 0 1 0 0
3 |Draw Pen 3 1 1 0 0
4 |Draw Pen 4 0 0 1 0
5 |Draw Pen 5 1 0 1 0
6 |[Draw Pen 6 0 1 1 0
7 |Draw Pen 7 1 1 1 0
8 |Draw Pen 8 0 0 0 1
9 | Draw Pen 9 1 0 0 1
10 | Draw Pen 10 0 1 0 1
11 | Draw Pen 11 1 1 0 1
12 [Draw Pen 12 0 0 1 1
13 | Draw Pen 13 1 0 1 1
14 | Draw Pen 14 0 1 1 1
15 |Draw Pen 15 1 1 1 1

496 Keyword Dictionary

Drawing with the negatives of the pen numbers while in normal pen mode causes the
bits to be cleared where there are 1s in the table. Drawing with the negatives of the pen
numbers while in alternate pen mode causes the bits to be inverted where there are 1s in
the table. In either case, no change will take place where there are Os in the table.

Pen 0 merely draws in the background color. Although complementing lines can be
drawn, complementing area fills cannot be executed.

Default Colors

The RGB and HSL values for the default pen colors while in color map mode are
shown below. These can be changed by the SET PEN statement. First, the RGB

(red/green/blue) values:

Pen Color Red |Green| Blue
0 |Black 0 0 0
1 | White 1 1 1
2 [Red 1 0 0
3 | Yellow 1 1 0
4 | Green 0 1 0
5 |[Cyan 0 1 1
6 | Blue 0 0 1
7 |Magenta 1 0 1
8 |Black 0 0 0
9 |Olive Green | .80 73 .20
10 | Aqua .20 .67 47
11 {Royal Blue .53 .40 .67
12 | Maroon .80 27 .40
13 | Brick Red 1.00 .40 .20
14 { Orange 1.00 47 0.00
15 | Brown .87 .53 .27

Keyword Dictionary 497

The same default color map colors are represented below in their HSL (hue/saturation/
luminosity) representations:

Pen Color Hue | Sat. |Lum
0 | Black 0 0 0
1 | White 0 1
2 |Red 1 1
3 | Yellow 17 1 1
4 | Green .33 1 1
5 [Cyan .50 1 1
6 | Blue 67 1 1
7 | Magenta .83 1 1
8 | Black 0 0 0
9 |Olive Green | .15 75 .80
10 | Aqua 44 75 .68
11 | Royal Blue .75 .36 64
12 | Maroon 95 .65 78
13 | Brick Red .04 .80 1.00
14 | Orange .08 1.00 § 1.00
15 | Brown .08 .70 .85

498 Keyword Dictionary

PENUP

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF.. . THEN Yes

This statement lifts the pen on the current plotting device.

Keyword Dictionary 499

PERMIT

Supported On WS, UX
Option Required HFS
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement modifies the owner, group, or public access permissions of an HFS file or
directory.

HFS file or
(PERMIT Hmrector‘ylsoecnier‘};(

"

literal form of HFS file or directory specifier:

I HFS file or l

" "
'() | directory name | <) 'I
directory volume
path specifier

Item Description Range
HF'S file or direc- | string expression (see drawing)
tory specifier
directory path literal (see MASS STORAGE IS)
file or directory |literal 1 to 14 characters
name (see Glossary)
volume specifier | literal (see MASS STORAGE IS)

500 Keyword Dictionary

Example Statements

PERMIT Dir_path$& File$& Volume$

PERMIT "/DirPath/HFSfile";OWNER:READ,WRITE; GROUP:READ
PERMIT "/DirPath/Dir";0THER:SEARCH

PERMIT "File"; OWNER:READ,WRITE; OTHER:READ

PERMIT "Dir"; GROUP:READ; OTHER:

PERMIT "File"

PERMIT "Directory"

Semantics
The PERMIT statement is used to:
e change the permissions (access rights) of a file or directory on an HFS disc,

e permit or restrict access to files and directories by the file owner, a member of the
file-owner’s group, or by all others.

Restricting access is useful, for instance, to prevent accidental purges of files or to prevent
others from reading or writing to a file.

You must be the current owner of the file or directory in order to execute PERMIT.

There are 9 bits of “permission” for HFS files.

OWNER GROUP OTHER
READ |WRITE | SEARCH |READ |WRITE | SEARCH |READ |WRITE | SEARCH

These bits are shown in the PERMISSION column of a CAT listing of the directory in
which the file or directory resides (R for READ; w for WRITE; x for SEARCH,; - for “no
permission”):

FILE NUM REC MODIFIED

FILE NAME TYPE RECS LEN DATE TIME PERMISSION OWNER GROUP
File 8192 1 7-Nov-86 9:23 RW-RW-RW- 18 9
Directory 256 1 7-Nov-86 9:24 RWXRWXRWX 18 9

The default permission bits for directories are: RWXRWXRWX.
The default permission bits for files are: RW-RW-RW-.

Keyword Dictionary 501

There are three classes of users:

e OWNER—initially the person who created the file (ownership can be changed with
the CHOWN statement). All BASIC Workstation files are created with an owner
identifier of 18. BASIC/UX files default to the owner’s user id.

e GROUP—initially the “group” to which the file’s/directory’s “owner” belongs (but
the group can be changed with the CHGRP statement). All BASIC Workstation
files are created with a group identifier of 9. BASIC/UX files default to the user’s
group id.

e OTHER—all other users who are not the owner and are not in the same group as
the owner (known as “public” on the HP-UX system).

Each class of users has three types of permissions for accessing a file or directory:
o READ —allows reading the file (such as with ASSIGN, ENTER, and GET).

e WRITE—allows a user to modify the file’s contents (such as with OUTPUT or
RE-STORE).

e SEARCH—an operation on directories which allows you to include the directory in
a directory path (such as with CAT and MASS STORAGE IS).

When a user class is specified, all permission bits for that class are changed:
e If a permission is specified, then the corresponding permission bit is set;

e If a permission is omztted, the corresponding permission bit is cleared.
For example, executing:

PERMIT "Div";Other:
gives the following permission:

RWXRWX---
If no user class is specified, the default permissions for that file are restored.
For example executing:

PERMIT "File"
gives the following permission:

RW-RW-RW-

502 Keyword Dictionary

Pl

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns 3.141 592 653 589 79, which is an approximate value for .

Example Statements

Area=PI*Radius~2
PRINT X,X*2*PI

Keyword Dictionary 503

PIVOT

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement specifies a rotation of coordinates which is applied to all subsequently
drawn lines.

Ttem I Description | Range

angle I numeric expression in current units of angle | (same as COS)

Example Statements

PIVOT 30
IF Special THEN PIVOT Radians

Semantics
The specified angle is interpreted according to the current angle mode (RAD or DEG).

The specified angular rotation is performed about the logical pen’s position at the time
the PIVOT is executed. This rotation is applied only to lines drawn subsequent to the
PIVOT; logical pen movement is not affected by PIVOT. Consequently, PIVOT generally
causes the logical and physical pens to be left at different positions. Other operations
which cause similar effects are attempts to draw outside clip limits and direct HPGL
output to plotters.

504 Keyword Dictionary

PLOT

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement moves the pen from the current pen position to the specified X and Y
coordinates. It can be used to move without drawing, or to draw a line, depending on
the pen control value.

X

y
coordinate

coordinate

Item

Description

pen
control

X

Range

x coordinate numeric expression, in current units

y coordinate numeric expression, in current units

pen control numeric expression, rounded to an integer;

Default = 1 (down after move)

array name name of two-dimensional, two-column or
three-column numeric array.

(Requires GRAPHX)

Example Statements

PLOT X,Y,-1
PLOT -5,12
PLOT Shape(*),FILL,EDGE

—32768 thru +32 767

any valid name

Keyword Dictionary 505

Semantics

Non-Array Parameters

The specified X and Y position information is interpreted according to the current unit-
of-measure. Lines are drawn using the current pen color and line type.

PLOT is affected by the PIVOT transformation.

The line is clipped at the current clipping boundary. If none of the line is inside the
current clip limits, the pen is not moved, but the logical pen position is updated.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR PDIR
Lines (generated by moves and X X Note 4
draws)
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

The optional pen control parameter specifies the following plotting actions; the default
value is +1 (down after move).

506 Keyword Dictionary

Pen Control Parameter

Pen Control Resultant Action
—Even Pen up before move
—0dd Pen down before move
+Even Pen up after move
+0dd Pen down after move

The above table is summed up by: even is up, odd is down, positive is after pen motion,
negative is before pen motion. Zero is considered positive.

Array Parameters

When using the PLOT statement with an array, either a two-column or a three-column
array may be used. If a two-column array is used, the third parameter is assumed to be
+1; pen down after move.

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a polygon.
The polygon begins at the first point on the sequence, includes each successive point,
and the final point is connected or closed back to the first point. A polygon is closed
when the end of the array is reached, or when the value in the third column is an even
number less than three, or in the range 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the PLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current
pen color. If polygon mode is entered from within the array, and the FILL/EDGE
directive for that series of polygons differs from the FILL/EDGE directive on the PLOT
statement itself, the directive in the array replaces the directive on the statement. In
other words, if a “start polygon mode” operation selector (a 6, 10, or 11) is encountered,
any current FILL/EDGE directive (whether specified by a keyword or an operation
selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the PLOT statement, FILL occurs first. If
neither one is specified, simple line drawing mode is assumed; that is, polygon closure

does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will
be edged, regardless of the directives on the statement.

Keyword Dictionary 507

When using a PLOT statement with an array, the following table of operation selectors
applies. An operation selector is the value in the third column of a row of the array to
be plotted. The array must be a two-dimensional, two-column or three-column array. If
the third column exists, it will contain operation selectors which instruct the computer
to carry out certain operations. Polygons may be defined, edged (using the current pen),
filled (using the current fill color), pen and line type may be selected, and so forth. See
the following list.

Operation
Column 1 | Column 2 Selector Meaning
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as +2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
line type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value
ignored ignored >15 Ignored

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array PLOT statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens

An operation selector of 3 selects a pen. The value in column one is the pen number
desired. The value in column two is ignored.

508 Keyword Dictionary

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one) selects the
pattern, and the repeat value (column two) is the length in GDUs that the line extends
before a single occurrence of the pattern is finished and it starts over. On the CRT,
the repeat value is evaluated and rounded down to the next multiple of 5, with 5 as the
minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This
works identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color

Operation selector 14 is used in conjunction with operation selector 15. Red and green
are specified in columns one and two, respectively, and column three has the value 14.
Following this row in the array (not necessarily immediately), is a row whose operation
selector in column three has the value of 15. The first column in that row contains the
blue value. These numbers range from 0 to 32 767, where 0 is no color and 32 767 is full
intensity. Operation selectors 14 and 15 together comprise the equivalent of an AREA
INTENSITY statement, which means it can be used on both a monochromatic and a
color CRT.

Operation selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through
a Red-Green-Blue (RGB) color model. The first column is encoded in the following
manner. There are three groups of five bits right-justified in the word; that is, the
most significant bit in the word is ignored. Each group of five bits contains a number
which determines the intensity of the corresponding color component, which ranges from
zero to sixteen. The value in each field will be sixteen minus the intensity of the color
component. For example, if the value in the first column of the array is zero, all three
five-bit values would thus be zero. Sixteen minus zero in all three cases would turn on all
three color components to full intensity, and the resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red, green,
and blue in the variables R, G, and B, respectively, the value for the first column in the
array could be defined thus:

Array(Row,1)=SHIFT (16%(1-B),-10) +SHIFT(16*(1-G),-5)+16*(1-R)

If there is a pen color in the color map similar to that which you request here, that
non-dithered color will be used. If there is not a similar color, you will get a dithered
pattern.

Keyword Dictionary 509

Polygons

A six, ten, or eleven in the third column of the array begins a “polygon mode”. If
the operation selector is 6, the polygon will be filled with the current fill color. If the
operation selector is 10, the polygon will be edged with the current pen number and
line type. If the operation selector is 11, the polygon will be both filled and edged.
Many individual polygons can be filled without terminating the mode with an operation
selector 7. This can be done by specifying several series of draws separated by moves.
The first and second columns are ignored and should not contain the X and Y values of
the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a
polygon to be edged and/or filled and also terminates the polygon mode (entered by
operation selectors 6, 10, or 11). The values in the first and second columns are ignored,
and the X and Y values of the last data point should not be in them. Edging and/or
filling of the most recent polygon will begin immediately upon encountering this operation
selector.

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits
cannot be changed from within the PLOT statement, so one probably would not have
more than one operation selector 12 in an array to PLOT, since the last FRAME will
overwrite all the previous ones.

Premature Termination

Operation selector 8 causes the PLOT statement to be terminated. The PLOT statement
will successfully terminate if the actual end of the array has been reached, so the use of
operation selector 8 is optional.

Ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any operation
selector greater that fifteen is also ignored, but operation selector 9 is retained for
compatibility reasons. Operation selectors less than —2 are not ignored. If the value
in the third column is less than zero, only evenness/oddness is considered.

510 Keyword Dictionary

PLOTTER IS

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement selects a plotting device, file, or pipe.

device
selector

PLOTTER IS

display/plotter
specifier

literal form of display/plotter specifier:

INTERNAL

98627A

=

Keyword Dictionary 511

Item

Description

Range

device selector

display /plotter
specifier

color map display
specifier

file specifier
plot specifier
window specifier

Xmin
xmax
ymin
ymax

directoty path

file name
LIF protect code
SRM password

volume specifier

numeric expression, rounded to an integer

string expression
string expression

string expression
string expression
numeric expression

numeric expression;
Default = —392.75mm

numeric expression:
Default = 392.75mm

numeric expression;
Default = —251.5mm

numeric expression;
Default = 251.5mm

literal

literal

literal; first two non-blank characters are
significant

literal; first 16 non-blank characters are sig-
nificant

literal

Example Statements

PLOTTER
PLOTTER
PLOTTER
PLOTTER
PLOTTER
PLOTTER
PLOTTER

IS
IS
IS
IS
IS
18
IS

3,13%

CRT, "INTERNAL" ;COLOR MAP
Dsg, "HPGL"
"Newfile","HPGL"
"/PL/PlotFile"
"PlotFile:REMOTE", "HPGL",6.25,266.25,6.975,186.975
601, "WINDOW" ; COLOR MAP

512 Keyword Dictionary

(see Glossary)

(see drawing)
INTERNAL or WINDOW

(see drawing)
HPGL
WINDOW

device dependent

device dependent

device dependent

device dependent

(see MASS STORAGE 1S)
depends on volume’s format
(see Glossary)

> not allowed

> not allowed

(see MASS STORAGE 1S)

(BASIC/UX only)

Semantics

Plotters
The hard clip limits of the plotter are read in when this statement is executed. Therefore,
the specified device must be capable of responding to this interrogation.

Files
This statement causes all subsequent plotter output to go to the specified file.

Xmin, Xmax, Ymin, Ymax are the hard clip limits of the plotter in millimeters.

This assumes 0.025 mm per plotter unit. The default size is for an HP 7580 or HP 7585
D-size drawing. See the plotter manual for more information on plotter limits.

The PLOTTER IS statement positions the file pointer to the beginning of the file.

The file is closed when another PLOTTER IS statement is executed or SCRATCH A,
GINIT or Reset is executed.

If you want to send HPGL commands to a file that is currently the PLOTTER IS device,
use the GSEND statement. (See the GSEND entry of this reference for details.)

An end-of-file error occurs when the end of a LIF file is reached.

SRM and HFS Files
In order to write to a PLOTTER IS file on an HFS volume, you need to have R (read) and
W (write) permission on the file, and X (search) permission on all superior directories.

In order to write to a PLOTTER IS file in an SRM volume, you need to have R (read)
and W (write) permissions on the file, as well as R permission on all superior directories.

No end-of-file errors occur on SRM or HFS files, because these files are extensible. That
is, if the data output to the file with this statement would overflow the file’s space
allocation, the file is automatically extended provided the disc contains enough unused
storage space.

Keyword Dictionary 513

SRM Plotter Spoolers

If the specified file is in the SRM plotter spooler directory and the file contains data, then
the SRM system sends the data to the plotting device (when the file is closed) and then
purges the file. You may close the file by executing another PLOTTER IS statement,
GINIT, SCRATCH A or SCRATCH BIN, or by pressing [RESET] ([SHIFT }[PAUSE] or
(Shift} (Break)).

Displays

The statement PLOTTER IS CRT, "INTERNAL" is executed whenever a graphics statement
is executed which needs a plotter (see GINIT) and no plotter is active. The plotter
activated is the first device encountered in the following order:

1. The alpha display, if it has graphics capabilities

2. Internal 98542A, 98543A, 98544A, 98545A, 98547A, 98548A, 98549A, 98550A,
98700, or 98720 at select code 6

3. Non-bit-mapped alpha display with graphics capabilities at select code 3 (BA-
SIC/UX supports the 98546A compatibility interface only)

4. External 98700 or 98720 at select code > 7
5. 98627A at select code > 7 (BASIC/WS only).
If the COLOR MAP option is specified and the plotting device has a color map, the

capability of changing the color map is enabled (see SET PEN). Also, the values written
into the frame buffer are different than they would be if color map mode was not enabled.

If the COLOR MAP option is not included and the plotting device is the Model 236
color display, the 4th memory plane is cleared (BASIC/WS only).

514 Keyword Dictionary

Non-Color Map Mode

Executing a PLOTTER IS statement without the COLOR MAP keyword causes the
color map to be defined as follows, where 0 is zero intensity and 1 is full intensity. This
emulates the HP 98627A non-color-mapped device on a color bit-mapped display.

Pen Color Red |{Green| Blue
0 Complement 0 0 0
1 White 1 1 1
2 |Red 1 0 0
3 Yellow 1 1 0
4 Green 0 1 0
5 Cyan 0 1 1
6 | Blue 0 0 1
7 Magenta 1 0 1

On a display with bit-mapped alpha, the non-color map mode affects the ALPHA PEN,
PRINT PEN, KEY LABELS PEN, and KBD LINE PEN statements as follows: 8 is
black (the same as 0) and 9 through 15 are white (the same as 1).

The complementing cursor will be white on top of all colors except white, in which case
it will be black.

COLOR MAP

In the COLOR MAP mode, the color map is initialized so that the first eight colors are
the same as they were in the default mode, and the second eight colors simulate HP’s
designer colors of plotter pen ink.

Although the pen numbers select the same color in color map mode as in non-color map
mode (for the first eight pens), the actual values written to the frame buffer are different.
This results from the different interpretation of the values in the frame buffer: in non-
color map mode, the values are RGB values; in color-map mode, the values are indices
into the color map. This means that a picture drawn in non-color map mode will change
colors if a PLOTTER IS with the COLOR MAP option is executed. The reverse is also
true.

On a console or a terminal, when the PLOTTER IS statement is executed, the color map is
initialized to a default state. If the graphics write-enable mask is left in the default mode,
the entire color map will be initialized as before. Otherwise, the following algorithm is
used: all color map entries whose binary representation has 1’s in non-graphics planes

Keyword Dictionary 515

will remain unchanged. This is done to insure that only pens dedicated to graphics are
initialized. For example, with a graphics write mask of 7 (binary 00000111), only pens
0 through 7 are initialized. Higher numbered pens would remain unchanged since their
binary representation would have 1s in non-graphics planes.

In windows, the color map is initialized to whatever the color map was when BASIC was

booted.

Display Specifiers

There are several values which can be used when specifying the display on which graphics

operations are done:

PLOTTER IS CRT, "INTERNAL" or
PLOTTER IS 1,"INTERNAL"

PLOTTER IS 3,"INTERNAL"

PLOTTER IS 6,"INTERNAL"

PLOTTER IS (device selector),"INTERNAL"

PLOTTER IS (window id),"WINDOW"
(BASIC/UX only)

516 Keyword Dictionary

This is the safest of the possibilities. “CRT”
is a built-in function which returns the
value 1, and the value 1 is interpreted by
the graphics system as “the default dis-
play.” The default display may be an ex-
ternal display if no internal display exists.

This specifies a non-bit-mapped display if
there is one; otherwise, the action is equiv-
alent to “PLOTTER IS 1,"INTERNAL"”. Spec-
ifying a value of 3 makes sense for all Series
200 displays except the Model 237.

Always specifies a bit-mapped display. If
one is not found, an error results.

With the 98700 and 98720 displays, it is
possible to configure the display card so
that it is at an external select code. For
example, if you set the select code to 25,
you would say:

PLOTTER IS 25,"INTERNAL"

This specifier works only in a windowing
environment. A window id of 600 is equiv-
alent to PLOTTER IS CRT,"INTERNAL" in the
windowing environment.

PLOTTER IS <device selector>,"98627A"1 This specifies a color graphics display con-

(BASIC/WS only) nected through the 98627A interface card.
This may have any one of several options
specifying television format, etc. See the
following table.

HP 98627A Display Specifiers

Desired Display Format Display Specifier
Standard Graphics
512 by 390 pixels, "98627A" or
60 Hz, non-interlaced "98627A;US STD"
512 by 390 pixels, "98627A;EURO STD"

50 Hz, non-interlaced

High-Resolution Graphics
512 by 512 pixels "98627A;HI RES"
46.5 Hz, non-interlaced

TV Compatible Graphics
512 by 474 pixels, "98627A;US TV"
60 Hz, interlaced
(30 Hz refresh rate)

512 by 512 pixels, "98627A;EURO0 TV"
50 Hz, interlaced
(25 Hz refresh rate)

Default Pen Colors

The PLOTTER IS statement defines the color map to default values in a non-windowing
environment. These values are different depending on whether or not the COLOR MAP
option was selected. The two color plates on the next page show eight default colors
available with non-color map mode, and the sixteen default colors in color map mode.

! PLOTTER IS <device selector>, "INTERNAL" is also accepted.

Keyword Dictionary 517

Pen @ Pen 1 Pen 2 Pen 3 Pen 4 FPen3 Pen 8 Pen 7
Biack Whits Red VYellow Green Cyan Bliue Maganta

Default Color Map Colors

Pen'1 Pan 2 Pen 32 Pan 4 Pan 5 Pen £ Pan?
White Red Yellow Gresn Cyan Blue Maganta

|

;
|
%:

-
-

Pen § Pen 1@ Pen 1] Pen 12 Pen 13 Pen 14 Pen 15
Olive fAqua Royal Maroon Brick Orange Bromn
Green Blue Red

518 Keyword Dictionary

The values, both in RGB and HSL, of the sixteen default pen colors are given below:

Color Map Default Color Definitions (RGB)

Pen Color Red |Green| Blue
0 [Black 0 0 0
1 | White 1 1 1
2 |Red 1 0 0
3 | Yellow 1 1 0
4 | Green 0 1 0
5 |Cyan 0 1 1
6 | Blue 0 0 1
7 | Magenta 1 0 1
8 |[Black 0 0 0
9 | Olive Green | .80 .73 .20
10 | Aqua .20 .67 47
11 |Royal Blue .53 .40 .67
12 | Maroon .80 27 .40
13 | Brick Red 1.00 .40 .20
14 | Orange 1.00 47 0.00
15 | Brown .87 .53 .27

Keyword Dictionary 519

The same default color map colors are represented below in their HSL (hue/saturation/
luminosity) representations:

Color Map Default Color Definitions (HSL)

Pen Color Hue | Sat. | Lum
0 | Black 0 0
1 | White 0 1
2 |Red 0 1 1
3 | Yellow 17 1 1
4 | Green .33 1 1
5 [Cyan .50 1 1
6 |Blue .67 1 1
7 | Magenta .83 1 1
8 | Black 0 0 0
9 |Olive Green | .15 75 .80
10 | Aqua 44 75 .68
11 | Royal Blue 75 36 .64
12 | Maroon .95 .65 78
13 | Brick Red .04 .80 1.00
14] Orange .08 1.00 | 1.00
15 | Brown .08 .70 .85

Eight-plane machines have 256-entry color maps. In these machines, pens 16 through

255 are defined to a variety of shades. For exact values, interrogate the color map with
GESCAPE.

BASIC/UX Specifics

BASIC/UX treats output to a pipe as it would output to a file. The pipe must be
explicitly closed before any output becomes permanent (or takes place). Output to a
spooled device will not be sent to the spooler until the pipe has been closed. The closing of
pipes can be achieved with a subsequent PLOTTER 1S, QUIT, or SCRATCH command.

520 Keyword Dictionary

POLYGON

Supported On WS, UX
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement draws all or part of a closed regular polygon. The polygon can be filled

and/or edged.

X

(POLVGOD——[ramus}
l () | total }
sides

sides
to draw

O~y =

Item Description Range
radius numeric expression, in current units —
total sides numeric expression, rounded to an integer. |3 thru 32767

sides to draw

Default = 60

numeric expression, rounded to an integer.

Default = all sides

Example Statements
POLYGON 1,5,5,4,FILL,EDGE

POLYGON 4

1 thru 32 767

Keyword Dictionary 521

Semantics

The radius is the distance that the vertices of the polygon will be from the logical pen
position. The first vertex will be at a distance specified by “radius” in the direction of
the positive X-axis. Specifying a negative radius results in the figure being rotated 180°.
POLYGON is affected by the PIVOT and the PDIR transformations.

The total sides and the number of sides drawn need not be the same. Thus:

POLYGON 1.5,8,5

will start to drawn an octagon whose vertices are 1.5 units from the current pen position,
but will only draw five sides of it before closing the polygon at the first point. If the
number of sides to draw is greater than the specified total sides, sides to draw is treated
as if it were equal to total sides.

POLYGON forces polygon closure, that is, the first vertex is connected to the last vertex,
so there is always an inside and an outside area. This is true even for the degenerate
case of drawing only one side of a polygon, in which case a single line results. This is
actually two lines, from the first point to the last point, and back to the first point.

Polygon Shape

The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anisotropic scaling causes the polygon to be distorted; stretched
or compressed along the axes. If a rotation transformation is in effect, the polygon will
be rotated first, then stretched or compressed along the unrotated axes.

The pen status also affects the final shape of a polygon if sides to draw is less than total
sides. If the pen is up at the time POLYGON is specified, the first vertex specified is
connected to the last vertex specified, not including the center of the polygon, which
is the current pen position. If the pen is down, however, the center of the polygon is
also included in it. If sides to draw is less than total sides, piece-of-pie shaped polygon
segments are created.

FILL and EDGE

FILL causes the interior of the polygon or polygon segment to be filled with the current
fill color as defined by AREA PEN, AREA COLOR, or AREA INTENSITY. EDGE
causes the edges of the polygon to be drawn using the current pen and line type. If both
FILL and EDGE are specified, the interior will be filled, then the edge will be drawn. If
neither FILL nor EDGE is specified, EDGE is assumed.

522 Keyword Dictionary

Polygons sent to an HPGL plotter are edged but not filled regardless of any FILL or
EDGE directives in the statement.

After POLYGON has executed, the pen is in the same position it was before the statement
was executed, and the pen is up. The polygon is clipped at the current clip limits.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE LDIR PDIR
Lines (generated by moves and X X Note 4
draws)
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

Keyword Dictionary 523

POLYLINE

Supported On WS, UX
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement draws all or part of an open regular polygon.

(POLYLINE }—+{-a0ius} l
total
sides

sides
to draw

Item Description Range
radius numeric expression, in current units —
total sides numeric expression, rounded to an integer. |3 thru 32767
Default = 60
sides to draw numeric expression, rounded to an integer. |1 thru 32767
Default = all sides

Example Statements

POLYLINE Radius,Sides,Sides_to_draw
POLYLINE 12,5

Semantics

The radius is the distance that the vertices of the polygon will be from the current pen
position. The first vertex will be at a distance specified by “radius” in the direction of
the positive X-axis. Specifying a negative radius results in the figure being rotated 180°.
POLYLINE is affected by the PIVOT and the PDIR transformations.

The total sides and the number of sides drawn need not be the same. Thus:
POLYLINE 1.5,8,5

will start to drawn an octagon whose vertices are 1.5 units from the current pen position,
but will only draw five sides of it. If the number of sides to draw is greater than the total
sides specified, it is treated as if it were equal to the total sides.

524 Keyword Dictionary

Shape of Perimeter

POLYLINE does not force polygon closure, that is, if sides to draw is less than total sides,
the first vertex is not connected to the last vertex, so there is no “inside” or “outside”
area.

The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anistropic scaling causes the perimeter to be distorted; stretched
or compressed along the axes. If a rotation transformation is in effect, the polygon will
be rotated first, then stretched or compressed along the unrotated axes.

The pen status also affects the way a POLYLINE statement works. If the pen is up at
the time POLYLINE is specified, the first vertex is on the perimeter. If the pen is down,
the first point is the current pen position, which is connected to the first point on the
perimeter.

After POLYLINE has executed, the current pen position is in the same position it was
before the statement was executed, and the pen is up. The polygon is clipped at the

current clip limits.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR PDIR
Lines (generated by moves and X X Note 4
draws)
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

Keyword Dictionary 525

POS

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the first position of a substring within a string.

string string
searched searched for

Item | Description I Range

string searched string expression —

string searched string expression —
for

Example Statements

Point=P0S(Big$,Little$)
IF POS(A$,CHR$(10)) THEN Line_end

Semantics

If the value returned is greater than 0, it represents the position of the first character
of the string being searched for in the string being searched. If the value returned is 0,
the string being searched for does not exist in the string being searched (or the string
searched for is the null string).

Note that the position returned is the relative position within the string expression used

as the first argument. Thus, when a substring is searched, the position value refers to
that substring, not to the parent string from which the substring was taken.

926 Keyword Dictionary

PPOLL

Supported On WS, UX
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF.. . THEN Yes

This function returns a value representing eight status-bit messages of devices on the
HP-IB.

select code

1/0 path
name

Item | Description | Range
I/O path name |name assigned to an interface select code any valid name
(see ASSIGN)
interface select numeric expression, rounded to an integer |7 thru 31

code

Example Statements

Stat=PPOLL(7)
IF BIT(PPOLL(@Hpib),3) THEN Respond

Semantics
The computer must be the active controller to execute this function.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(duration>25us) (duration>25us)
Active Read byte Error Rezﬂ)yte Error
Controller EOI EOI
Restore ATN to Restore ATN to
previous state previous state
Not Active
Controller Error

Keyword Dictionary 527

PPOLL CONFIGURE

Supported On WS, UX
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement programs the logical sense and data bus line on which a specified device
responds to a parallel poll.

1/0 path
name

PPOLL CONFIGURE

selector

Item Description Range
I/O path name |name assigned to a device or devices any valid name
device selector numeric expression, rounded to an integer | must contain a

primary address
(see Glossary)

configure byte numeric expression, rounded to an integer |0 thru 15
Example Statements

PPOLL CONFIGURE 711;2
PPOLL CONFIGURE @Dvm;Response

528 Keyword Dictionary

Semantics

This statement assumes that the device’s response is bus-programmable. The computer
must be the active controller to execute this statement.

The configure byte is coded. The three least significant bits determine the data bus line
for the response. The fourth bit determines the logical sense of the response.

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active UNL UNL
Controller Error LAG Error LAG
PPC PPC
PPE PPE
Not Active
Controller Error

Keyword Dictionary 529

PPOLL RESPONSE

Supported On WS, UX
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement defines a response to be sent when an Active Controller performs a
Parallel Poll on an HP-IB Interface. The response indicates whether this computer does
or does not need service.

PPOLL RESPONSE Q
)

select code

I do/don’t
need service

Item Description Range
I/O path name name assigned to an interface select code any valid name
interface select numeric expression, rounded to an integer |7 thru 31
code
I do/don’t numeric expression, rounded to an integer |0 or 1
need service

Examples

PPOLL RESPONSE Q@Hp_ib;I_need_service
PPOLL RESPONSE Interface;0

530 Keyword Dictionary

Semantics

This statement defines the computer’s response to a Parallel Poll (ATN & EOI) performed
by the current Active Controller on the specified HP-IB Interface. This statement only
sets up a potential response; no actual response is generated when the statement is
executed.

If the value of the “I do/don’t need service” parameter is 0, the computer is directed to
place a logical false on the bit on which it has been defined to respond; this response will
tell the Active Controller that this (non-active) controller does not need service. Any
non-zero, positive value of this parameter (within the stated range) directs the computer
to set up a true response, which will tell a polling Active Controller that the computer
requires service.

The bit on which the computer is to place its Parallel Poll response is determined by the
value of the last “configure byte” written to CONTROL Register 5 of the corresponsing
HP-IB Interface. In general, this configure byte can be read from HP-IB STATUS
Register 7 by the service routine that responds to Parallel-Poll-Configuration-Change
interrupts (Bit 14 of the Interrupt Enable Register). This configure byte may then
be written into HP-IB CONTROL Register 5, and the response desired by the Active
Controller will be sent when a Parallel Poll is conducted.

This statement may be executed by either an Active Controller or a non-active controller.

Keyword Dictionary 531

PPOLL UNCONFIGURE

Supported On WS, UX
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement disables the parallel poll response of a specified device or devices.

PPOLL UNCONF IGURE (e) 5.5 " |
l'

selector

Item | Description | Range
I/O path name

name assigned to a device or devices any valid name

device selector numeric expression, rounded to an integer | (see Glossary)

Example Statements

PPOLL UNCONFIGURE 7
PPOLL UNCONFIGURE @Plotter

532 Keyword Dictionary

Semantics

The computer must be the active controller to execute PPOLL UNCONFIGURE.

If multiple devices are specified by an 1/O path name, all specified devices are deactivated
from parallel poll response. If the device selector or I/O path name refers only to an
interface select code, all devices on that interface are deactivated from parallel poll

response.
Summary of Bus Actions
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN

MTA MTA

Active ATN UNL ATN UNL

Controller PPU LAG PPU LAG

PPC PPC

PPD PPD

Not Active

Controller Error

Keyword Dictionary 533

PRINT

This statement sends items to the PRINTER IS device.

(PRINT)

Expanded diagram

print
items

P |
|

Supported On
Option Required
Keyboard Executable
Programmable

In an IF...THEN

|
(PRINT - 7 >~
image line
(—_’(PSING number
w
E
)
hot image line
< label
[
o
@ |II'IIIIIIIIII!IIII
3 -
- image
L
) J
r \‘L/ ,f\\‘
T
string Il
expression |
string
. DN Op @
€
o
v
-
< numeric
¥ expression
= trailing punctuation
s not allowed with USING
numeric (*)\
array name J
Ofm}G
CRT CRT
L e)—~(O O D

tab functions not allowed with USING

534 Keyword Dictionary

WS, UX
None
Yes

Yes

Yes

literal form of image specifier

image
specifier list

Item Description Range
image line integer constant identifying an IMAGE |1 thru 32766
number statement
image line label |name identifying an IMAGE statement any valid name
image specifier string expression (see drawing)
string array name | name of a string array any valid name
numeric array name of a numeric array any valid name
name
column numeric expression, rounded to an integer | device dependent
CRT column numeric expression, rounded to an integer |1 thru screen width
CRT row numeric expression, rounded to an integer |1 thru alpha height
image specifier |literal (see next drawing)
list
repeat factor integer constant ' 1 thru 32767
literal string constant composed of characters from | quote mark not allowed

the keyboard, including those generated us-
ing the ANY CHAR key

Example Statements

PRINT "LINE";Number

PRINT Array(*);

PRINT TABXY(1,1) ,Header$, TABXY(Col,3) ,Message$
PRINT USING "5Z.DD";Money

PRINT USING Fmt3;Id,Item$,Kilograms/2.2

Keyword Dictionary 535

1mage speci1fier list

OOHOOO0

©
®

ESZZ

0905

Radix speci1fier cannot
be used without a
digit specifien

536 Keyword Dictionary

—
-
o
®
R
[
—

Semantics

Standard Numeric Format

The standard numeric format depends on the value of the number being displayed. If
the absolute value of the number is greater than or equal to 1E-4 and less than 1E+6, it
is rounded to 12 digits and displayed in floating point notation. If it is not within these
limits, it is displayed in scientific notation. The standard numeric format is used unless
USING is selected, and may be specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers separated by a semicolon.

Automatic End-Of-Line Sequence

After the print list is exhausted, an End-Of-Line (EOL) sequence is sent to the PRINTER
IS device, unless it is suppressed by trailing punctuation or a pound-sign (#) image
specifier. The printer width for EOL sequences generation is set to the screen width
(50, 80 or 128 characters) for CRTs and to 80 for external devices unless the WIDTH
attribute of the PRINTER IS statement was specified. WIDTH is off for files. This
“printer width exceeded” EOL is not suppressed by trailing punctuation, but can be
suppressed by the use of an image specifier.

Control Codes
Some ASCII control codes have a special effect in PRINT statements if the PRINTER
IS device is the CRT (device selector=1):

Character | Keystroke Name Action

CHRS$(7) bell Sounds the beeper

CHRS$(8) (CTRLH H] |backspace Moves the print position back one
character.

CHR$(10) line-feed Moves the print position down one
line.

CHR$(12) form-feed Prints two line-feeds, then advances
the CRT buffer enough lines to place
the next item at the top of the CRT.

CHR$(13) |[[CTRL} M] |carriage-return |Moves the print position to column
1.

The effect of ASCII control codes on a printer is device dependent. See your printer
manual to find which control codes are recognized by your printer and their effects.

Keyword Dictionary 537

CRT Enhancements

There are several character enhancements (such as inverse video and underlining)
available on some CRTs. They are accessed through characters with decimal values
above 127. For a list of the characters and their effects, see the “Display Enhancement
Characters” table in “Useful Tables” at the back of this book.

Arrays

Entire arrays may be printed using the asterisk specifier. Each element in an array is
treated as a separate item by the PRINT statement, as if the items were listed separately,
separated by the punctuation following the array specifier. If no punctation follows the
array specifier, a comma is assumed. COMPLEX array elements are treated as if the
real and imaginary parts are separated by a semicolon. The array is output in row major
order (rightmost subscript varies fastest).

PRINT Fields

If PRINT is used without USING, the punctuation following an item determines the
width of the item’s print field; a semicolon selects the compact field, and a comma
selects the default print field. Any trailing punctation will suppress the automatic EOL
sequence, in addition to selecting the print field to be used for the print item preceding
it.

The compact field is slightly different for numeric and string items. Numeric items are

printed with one trailing blank. String items are printed with no leading or trailing
blanks.

The default print field prints items with trailing blanks to fill to the beginning of the
next 10-character field.

Numeric data is printed with one leading blank if the number is positive, or with a minus
sign if the number is negative, whether in compact or default field.

TAB

The TAB function is used to position the next character to be printed on a line. In the
TAB function, a column parameter less than one is treated as one. A column parameter
greater than zero is subjected to the following formula: TAB position = ((column — 1)
MOD width) + 1; where “width” is 50 for the Model 226 CRT, 128 for Model 237 and
other hi-resolution displays, and 80 for all other devices. If the TAB position evaluates
to a column number less than or equal to the number of characters printed since the
last EOL sequence, then an EOL sequence is printed, followed by (TAB position — 1)
blanks. If the TAB position evaluates to a column number greater than the number of
characters printed since the last EOL, sufficient blanks are printed to move to the TAB
position.

538 Keyword Dictionary

TABXY

The TABXY function provides X-Y character positioning on the CRT. It is ignored if a
device other than the CRT is the PRINTER IS device. TABXY(1,1) specifies the upper
left-hand corner of the CRT. If a negative value is provided for CRT row or CRT column,
it is an error. Any number greater than the screen width for CRT column is treated as
the last column on the screen. Any number greater than the height of the output area
for CRT row is treated as the last line of the output area. If 0 is provided for either
parameter, the current value of that parameter remains unchanged.

Display Type Output Area Height Display Width
226 18 50
216, 220, 236, 18 80
and 98546
98542 and 98543 19 80
237, 98544, 41 128
98545, 98547,
98549, and
98700
98548 and 98550 44 128

PRINT With Using

When the computer executes a PRINT USING statement, it reads the image specifier,
acting on each field specifier (field specifiers are separated from each other by commas)
as it is encountered. If nothing is required from the print items, the field specifier is
acted upon without accessing the print list. When the field specifer requires characters,
it accesses the next item in the print list, using the entire item. Each element in an array
is considered a separate item.

The processing of image specifiers stops when there is no matching display item (and the
specifier requires a display item). If the image specifiers are exhausted before the display
items, they are reused, starting at the beginning.

COMPLEX values require two REAL image specifiers (i.e. each COMPLEX value is
treated like two REAL values).

If a numeric item requires more decimal places to the left of the decimal point than are
provided by the field specifier, an error is generated. A minus sign takes a digit place
if M or S is not used, and can generate unexpected overflows of the image field. If the
number contains more digits to the right of the decimal point than are specified, it is
rounded to fit the specifier.

Keyword Dictionary 539

If a string is longer than the field specifier, it is truncated, and the right-most characters
are lost. If it is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on the PRINT statement are shown in the following table:

Image
Specifier Meaning

K Compact field. Prints a number or string in standard form with no leading or

trailing blanks.
-K Same as K.

H Similar to K, except the number is printed using the European number format
(comma radix). (Requires I0)

-H Same as H. (Requires 10)

S Prints the number’s sign (+ or —).

M Prints the number’s sign if negative, a blank if positive.

D Prints one digit character. A leading zero is replaced by a blank. If the number is
negative and no sign image is specified, the minus sign will occupy a leading digit
position. If a sign is printed, it will “float” to the left of the left-most digit.

Z Same as D, except that leading zeros are printed.

* Like Z, except that asterisks are printed instead of leading zeros. (Requires 10)
Prints a decimal-point radix indicator.

R Prints a comma radix indicator (European radix). (Requires 10)

E Prints an E, a sign, and a two-digit exponent.

ESZ Prints an E, a sign, and a one-digit exponent.
ESZZ Same as E.
ESZZZ |Prints an E, a sign, and a three-digit exponent.
A Prints a string character. Trailing blanks are output if the number of characters

specified is greater than the number available in the corresponding string. If
the image specifier is exhausted before the corresponding string, the remaining
characters are ignored.

540 Keyword Dictionary

Image
Specifier

Meaning

X
literal
B

3k

%

Prints a blank.
Prints the characters contained in the literal.

Prints the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an INTEGER and the least-significant byte is
sent. If the number is greater than 32 767, then 255 is used; if the number is less
than —32 768, then 0 is used.

Prints two characters represented by the two bytes in a 16-bit, two’s-complement
integer word. The corresponding numeric item is rounded to an INTEGER. If it
is greater than 32 767, then 32 767 is used; if it is less than —32 768, then —32 768
is used. On an 8-bit interface, the most-significant byte is sent first. On a 16-bit
interface, the two bytes are sent as one word in a single operation.

Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the
last print item.

Ignored in PRINT images.

Changes the automatic EOL sequence that normally follows the last print item to
a single carriage-return. (Requires 10)

Changes the automatic EOL sequence that normally follows the last print item to
a single line-feed. (Requires 10)

Sends a carriage-return and a line-feed to the PRINTER IS device.

Sends the current EOL sequence to the PRINTER IS device. The default EOL
characters are CR and LF; see PRINTER IS for information on re-defining the

EOL sequence. If the destination is an I/O path name with the WORD attribute,
a pad byte may be sent after the EOL characters to achieve word alignment.

Sends a form-feed to the PRINTER IS device.

Keyword Dictionary 541

PRINTALL IS

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement assigns a logging device, file or pipe for recording operator interaction
and troubleshooting messages.

PRINTALL IS device selector L

542 Keyword Dictionary

Item

Description

Range

file specifier

device selector
end-of-line

characters

seconds

line width

string expression

numeric expression, rounded to an integer;
Default = CRT

string expression;
Default = CR/LF

numeric expression, rounded to the nearest
0.001 seconds;
Default = 0

numeric expression, rounded to an integer;
Default = infinity (see text)

Example Statements

PRINTALL IS 701
PRINTALL IS Gpio

PRINTALL IS 701;EOL CHR$(13) END,WIDTH 65

PRINTALL IS 614
PRINTALL IS "debug.out"
PRINTALL IS "| fold | pr -e -08 | 1p"

Semantics

(see Glossary)
0 thru 8 characters

0.001 thru 32.767

1 thru 32767

BASIC/UX in X Windows only)
BASIC/UX only
BASIC/UX only

The printall device or file must be enabled by the key on the computer. The
key is a toggle action device or file, enabling and disabling the printall operation.
When the printall mode is enabled, all items generated by DISP, all operator input
followed by the {Return], (ENTER], [CONTINUE], or [EXECUTE] key, and all error messages
from the computer are logged on the printall device or file. All TRACE activity is
logged on the printall device or file if tracing is enabled.

An asterisk (*) is displayed on the PRINTALL softkey label of models with ITF
keyboards, if printall mode is enabled.

At power-on and SCRATCH A, the default printall device is the CRT (select code 1).

Keyword Dictionary 543

The EOL Attribute (Requires 10)

The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the
following times: after the number of characters specified by line width and after each
line of text. Up to eight characters may be specified as the EOL characters; an error
is reported if the string contains more than eight characters. If END is included in the
EOL attribute, an interface-dependent END indication is sent with the last character of
the EOL sequence. If DELAY is included, the computer delays the specified number of
seconds (after sending the last character) before continuing. The default EOL sequence
consists of a carriage-return and a line-feed character with no END indication and no
delay period.

The WIDTH Attribute (Requires 10)

The WIDTH attribute specifies the maximum number of characters which will be sent
to the printing device or file before an EOL sequence is automatically sent. The EOL
characters are not counted as part of the line width. The default width for the Model
226 CRT is 50, Model 237 and other high-resolution displays is 128, and the default for
all other devices or file is 80. Specifying WIDTH OFF sets the width to infinity. If the
default is desired, it must be restored explicitly. If the USING clause is included in the
PRINT statement, the WIDTH attribute is ignored.

PRINTALL IS file
The file must be a BDAT or HP-UX file.

The PRINTALL IS file statement positions the file pointer to the beginning of the file.

The file is closed when another PRINTALL IS statement is executed and at SCRATCH
A.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON.

An end-of-file error occurs when the end of a LIF file is reached.

SRM and HFS Files
In order to write to a PRINTALL IS file on an HFS volume, you need to have R (read) and
W (write) permission on the file, and X (search) permission on all superior directories.

In order to write to a PRINTALL IS file on an SRM volume, you need to have READ and

WRITE capabilities on the immediately superior directory, as well as READ capabilities
on all other superior directories.

544 Keyword Dictionary

No end-of-file error occurs when writing to a file on an SRM or HFS volume because
these files are extensible. That is, if the data output to the file with this statement would
otherwise overflow the file’s space allocation, the BASIC system automatically allocates
the additional space needed (provided the media contains enough unused storage space).

If the specified file is in the SRM printer spooler directory, is of type BDAT!, and contains
data, then the SRM system sends the data to the printer (after the file is closed) and then
purges the file. You may close the file by executing another PRINTALL IS statement,
or a SCRATCH A or SCRATCH BIN command.

BASIC/UX Specifics

On HP-UX systems, the line-printer is a spooled device. Writing directly to the printer
as 701 may interfere with other spooled output. It is recommended that PRINTALL
IS output be directed to either a file or the line-printer spooler by, for example, the
statement:

PRINTALL IS "|1p"

BASIC/UX treats output to a pipe as it would output to a file. The pipe must be
explicitly closed before any output becomes permanent (or takes place). Output to a
spooled device will not be sent to the spooler until the pipe has been closed. The closing of
pipes can be achieved with a subsequent PRINTALL IS, QUIT, or SCRATCH command.

If PRINTALL IS device is a window and that window is destroyed (with DESTROY
WINDOW), PRINTALL IS is undefined and generates an error.

1 The SRM printer spooler will also spool ASCII files, which can be written by BASIC using OUTPUT,
SAVE or RE-SAVE.

Keyword Dictionary 545

PRINTER IS

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement specifies the system printing device, file, or pipe.

X

file speciﬁer—l

l device selector II

PRINTER IS

literal form of file specifier:

o file "
H name
directory e LIF protect ° volume
path code specifier
SN0

-

HFS or SRM files only

e password

546 Keyword Dictionary

Item Description

Range

file specifier string expression

device selector numeric expression, rounded to an integer

end-of-line string expression;

characters Default = CR/LF

seconds numeric expression, rounded to the nearest
0.001 seconds;
Default=0

line width numeric expression, rounded to an integer;

Default = (see text)
directory path literal

file name literal

LIF protect code |literal; first two non-blank characters are
significant

SRM password literal; first 16 non-blank characters are sig-
nificant

volume specifier |[literal

Example Statements

PRINTER IS 701

PRINTER IS 614 (Windows only)
PRINTER IS Gpio

PRINTER IS "debug.out"

PRINTER IS 701;EOL CHR$(13) END,WIDTH 65

PRINTER IS "Myfile";WIDTH 80

PRINTER IS "Spooler:REMOTE"

PRINTER IS "My_dir/Temp_print";WIDTH 80

(see Glossary)

0 thru 8 characters

0.001 thru 32.767

1 thru 32767

(see MASS STORAGE 1IS)
depends on volume’s format
(see Glossary)

> not allowed

> not allowed

(see MASS STORAGE 1S)

PRINTER IS " | fold | pr -e -08| 1p" (BASIC/UX only)

Keyword Dictionary 547

Semantics

The system printing device or file receives all data sent by the PRINT statement and all
data sent by CAT, LIST, and XREF statements in which the destination is not explicitly
specified.

The default printing device is the CRT (select code 1) at power-on and after executing
SCRATCH A.

The EOL Attribute (Requires 10)

The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the
following times: after the number of characters specified by line width, after each line
of text, and when an “L” specifier is used in a PRINT USING statement. Up to eight
characters may be specified as the EOL characters; an error is reported if the string
contains more than eight characters. If END is included in the EOL attribute, an
interface-dependent END indication is sent with the last character of the EOL sequence.
If DELAY is included, the computer delays the specified number of seconds (after sending
the last character) before continuing. The default EOL sequence consists of a carriage-
return and a line-feed character with no END indication and no delay period. END and
DELAY are ignored for files.

The WIDTH Attribute (Requires 10)

The WIDTH attribute specifies the maximum number of characters which will be sent to
the printing device before an EOL sequence is automatically sent. The EOL characters
are not counted as part of the line width. The default width for the Model 226 CRT
is 50, Model 237 and other high-resolution displays is 128, and the default for all other
devices is 80. Specifying WIDTH OFF sets the width to infinity. If the default is desired,
it must be restored explicitly. If the USING clause is included the PRINT statement,
the WIDTH attribute is ignored. Default WIDTH for files is OFF.

PRINTER IS file
The file must be a BDAT or HP-UX file.

The PRINTER IS file statement positions the file pointer to the beginning of the file.

The file is closed when another PRINTER IS statement is executed and at SCRATCH
A.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON.

An end-of-file error occurs when the end of a LIF file is reached.

9548 Keyword Dictionary

SRM and HFS Files
In order to write to a PRINTER IS file on an HFS volume, you need to have R (read) and
W (write) permission on the file, and X (search) permission on all superior directories.

In order to write to a PRINTER IS file on an SRM volume, you need to have READ and
WRITE capabilities on the immediately superior directory, as well as READ capabilities
on all other superior directories.

No end-of-file error occurs when writing to a file on an SRM or HFS volume because
these files are extensible. That is, if the data output to the file with this statement would
otherwise overflow the file’s space allocation, the BASIC system automatically allocates
the additional space needed (provided the media contains enough unused storage space).

If the specified file is in the SRM printer spooler directory, is of type BDAT?, and contains
data, then the SRM system sends the data to the printer (after the file is closed) and then
purges the file. You may close the file by executing another PRINTER IS statement, or
a SCRATCH A or SCRATCH BIN command.

BASIC/UX Specifics

On HP-UX systems, the line-printer is a spooled device. Writing directly to the printer
as 701 may interfere with other spooled output. It is recommended that printer output
be directed to either a file or the line-printer spooler by, for example, the statement:

PRINTER IS "|1lp"

BASIC/UX treats output to a pipe as it would output to a file. The pipe must be
explicitly closed before any output becomes permanent (or takes place). Output to a
spooled device will not be sent to the spooler until the pipe has been closed. The closing of
pipes can be achieved with a subsequent PRINTER IS, QUIT, or SCRATCH command.

1 The SRM printer spooler will also spool ASCII files, which can be written by BASIC using OUTPUT,
SAVE or RE-SAVE.

Keyword Dictionary 549

PRINT LABEL

Supported On WS, UX
Option Required MS
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement gives a name to a mass storage volume.

(PRINT LABEL }—+{ "2} -

T D S Dveocllufm)ee r
Item | Description l Range
volume label name to be given to the volume —
volume specifier |string expression; (see MASS STORAGE
Default=the default mass storage unit IS)

Example Statements

PRINT LABEL "Vers3" TO ":INTERNAL,4,0"
PRINT LABEL Vol_label$ TO Vol_specifier$

Semantics

The new name overwrites any previous name for the volume.

The volume label can be zero to six characters in length consisting of letters and numbers.
For maximum interchange, the characters should be limited to upper-case letters (A-Z)
and digits (0-9) with the first character being a letter.

You cannot use PRINT LABEL with SRM volumes; instead, you will have to name the
volume at the SRM console.

BASIC/UX Specifics
PRINT LABEL does not work in BASIC/UX for HFS.

550 Keyword Dictionary

PRINT PEN

Supported On WS, UX
Option Required CRTX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement sets the pen color to be used in the output area and display line of the
CRT.

@INT PEN)—.Lpen value I—.'

Item | Description/Default | Range Restrictions

pen value | numeric expression | —

Example Statements

PRINT PEN Pen_value
PRINT PEN 143
IF Color_blue THEN PRINT PEN 141

Keyword Dictionary 551

Semantics
This statement has no effect on monochrome displays.

The set of alpha colors for the Model 236C is given in the table below:

Value Result
< 16 The number is evaluated MOD
8 and resulting values produce
the following:

0 — black
1 — white
2 — red

3 — yellow
4 — green
5 — cyan
6 — blue

7 — magenta
16 to 135 Ignored

136 White
137 Red

138 Yellow
139 Green
140 Cyan
141 Blue

142 Magenta
143 Black

144 to 255 Ignored

For displays with bit-mapped alpha, PRINT PEN specifies the graphics pen to be used
for subsequent alpha output. The range of values allowed with this statement are 0
through 255; these values are treated as MOD 2°n where n is the number of display
planes.

PRINT PEN n and CONTROL CRT,15; n set the value of CRT control register 15. These
statements have no effect on control registers 16 and 17 which are set using KEY LABELS
PEN and XBD LINE PEN. respectively.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 15.

PRIORITY

See the SYSTEM PRIORITY statement.

552 Keyword Dictionary

PROTECT

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement specifies the protect code used on PROG, BDAT, and BIN files on LIF
volumes. It also specifies passwords used on all types of files and directories on SRM
volumes. (See PERMIT for access permissions of files and directories on HFS volumes.)

LIF file new LIF
specifier protect code

X

(ProTECT

SAM
password

SRM file
specifier
SAM directory. @

specifier

literal form of file specifier:

" [File |
| name |
directory LIF protect
path code
— SAM
password

SAM files only
literal form of directory specifier

@—’l

volume
specifier

" IdiPeCtDPyI [
1L name |
directory SRM volume
path password specifier

Keyword Dictionary 553

Item

Description

Range

LIF file specifier

new LIF protect
code

SRM file specifier

SRM directory
specifier

new SRM pass-
word

string expression

string expression; first two non-blank char-

acters are significant

string expression

string expression

literal; first 16 characters are significant

(see “file specifier” drawing)
“>” not allowed

(see “file specifier” drawing)
(see “directory specifier”

drawing)

any valid SRM password
(see Glossary)

directory path literal (see MASS STORAGE IS)

depends on volume’s format
(see Glossary)

(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)

file name literal

volume specifier |literal

directory name literal

Example Statements

PROTECT Name$,Lif_pc$
PROTECT "George<xy>:INTERNAL", "NEW"

PROTECT "dir:REMOTE", ("mgr":MANAGER), ("rw":READ,WRITE)
PROTECT "File<rw>", ("rw":DELETE)

Semantics

LIF Files

The protect code is necessary only for an operation which would write to the file or
PURGE the file. The file can always be read without using the protect code (by LOAD,
COPY, CAT “file name”, etc.) The protect code is required for ASSIGN {and therefore
ENTER) since ASSIGN opens a file for both read and write.

Protect codes are “trimmed” before they are used. Therefore, leading and trailing blanks

are insignificant. Removing a protect code from a file is accomplished by assigning a
protect code that is the null string or contains all blanks.

554 Keyword Dictionary

SRM Files (Requires SRM and DCOMM)

PROTECT allows you to control access to SRM files and directories by protecting access
capabilities with password(s). Access capabilities are either public (available to all SRM
users) or password-protected (available only to users supplying the correct password with
the file or directory specifier).

The three access capabilities—MANAGER, READ and WRITE—are public until the
PROTECT statement associates a password with one or more of those capabilities.

Once the capability on a given file or directory is password-protected, the capability can
be exercised on the file or directory only if the correct password is included in the file
or directory specifier. For instance, if a file’s READ capabilities are protected, any user
wishing to execute a command or statement that reads the file must supply a password
protecting the file’s READ capability.

MANAGER Access Capability (SRM)

Public MANAGER capability allows any SRM user to PROTECT, PURGE or RENAME
a file or directory. Password-protected MANAGER capability provides READ and
WRITE, as well as MANAGER, access capabilities to users who know the password.

You must have MANAGER capabilities on a file or directory to PROTECT the access
capabilities on that file or directory. This includes adding, deleting and changing
passwords.

READ Access Capability (SRM)

READ capability on a file allows use of commands and statements that read the contents
of a file (for example: ENTER, LOAD, GET). READ capability on a directory allows
you to read the files in the directory (CAT), or to “pass through” a directory by including
the directory name (and password, if assigned) in a directory path.

WRITE Access Capability (SRM)

WRITE capability on a file allows use of commands and statements that write to the
file (for example: OUTPUT, RE-SAVE, RE-STORE). WRITE capability on a directory
allows use of commands that add or delete file names in the directory (for example:
SAVE, STORE, PURGE, CREATE, RENAME).

Keyword Dictionary 555

Use of PROTECT on SRM

Each PROTECT statement allows up to six password/capability combinations per
statement. The number of PROTECT statements that can be executed for each file
or directory is unlimited, however, as long as each password is unique.

Successive associations of capabilities with the same password are not cumulative. To
retain previous capability assignments for a file or directory, you must include those
assignments in subsequent PROTECT statements designating the same password for
that file or directory.

For example, say you protected the REEAD access capability on a file with the password
passme then wanted to change that assignment so that passme would protect both the
READ and WRITE access capabilities for that file. If you executed a second PROTECT
statement associating passme with the WRITE capability only, passme would no longer
protect the READ capability. Instead, you should specify the password and beth the
READ and WRITE capabilities in the second PROTECT statement.

To modify the access capabilities protected by a password, execute the PROTECT with
the existing password and the new password/capability pair(s).

The secondary keyword DELETE is used to delete existing password assignments for a
file or directory. To be effective, DELETE must be the only secondary keyword used
with a password/capability pair in the PROTECT statement. Otherwise, DELETE
is ignored. MANAGER capability is required to perform the DELETE. A DELETE
executed without MANAGER capability results in a protect code violation error.

556 Keyword Dictionary

PROUND

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the value of the argument rounded to the specified power-of-ten.

ower
pRouro)= () O, O

Item I Description | Range
argument numeric expression
power of ten numeric expression, rounded to an integer

Example Statements

Money=PROUND (Result, -2)
PRINT PROUND(Quantity,Decimal_place)

Semantics
COMPLEX arguments are not allowed with this function.

Keyword Dictionary 557

PRT

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This INTEGER function returns 701, the default (factory set) device selector for an
external printer.

Example Statements

PRINTER IS PRT
OUTPUT PRT;A$

558 Keyword Dictionary

PURGE

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement deletes a file from a directory. On hierarchical-directory volumes (such
as HFS and SRM), PURGE deletes an empty directory from its superior directory.

file
specifier

directory
specifier

literal form of file specifier

Jrite |
L name |
directory
path

HFS or SRAM fllES unly

.<">Il
LIF protect volume
code specifier
SRM
password

literal form of directory specifier

d)rectory

'(} name ‘O""
directory SRM volume
path passworu specxfler

Keyword Dictionary 559

Item

Description

Range

file specifier

directory
specifier

directory path

file name

LIF protect code

SRM password

volume specifier

directory name

string expression

string expression

literal

literal

literal; first two non-blank characters are

significant

literal; first 16 non-blank characters are sig-

nificant
literal

literal

Example Statements

PURGE
PURGE
PURGE
PURGE
PURGE

File_name$
"File"

"George<PC>"
"Dir_a<SRM_RW_pass>/File<MGR_pass>"
"Dir1/Dir2/Dir3"

560 Keyword Dictionary

(see drawing)

(see drawing)

(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)

> not allowed
> not allowed
(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)

Semantics

Once a file is purged, you cannot access the information which was in the file. The
records of a purged file are returned to “available space.”

An open file must be closed before it can be purged. Any file except a PRINTER IS file,
a PLOTTER IS file, or the current working directory can be closed by ASSIGN TO * (see
ASSIGN). All files except those opened with the PRINTER IS statement are closed by
(RESET] ([SHIFT F PAUSE] or [Shift H Break]). A PRINTER IS file can be closed by executing
a PRINTER IS to another device or file. A PLOTTER IS file can be closed by GINIT
or PLOTTER IS to another device or file. SCRATCH A also closes all files.

SRM and HFS Files and Directories
In order to PURGE an HFS or SRM directory or file, all of the following conditions must
be met:

o It must be closed. The current working directory is closed by an MSI to a different
directory. SCRATCH A closes all directories and files.

o It must be empty (directories only). That is, it must not contain any subordinate
files or directories.

e You must have the appropriate access capabilities.

e In order to PURGE a file or directory on an HFS volume, you need to have
W (write) and X (search) permission of the immediately superior directory,
as well as X (search) permission on all other superior directories. Note that
the ability to purge an HFS file is not determined by the file’s permissions
but rather by the permissions set on the parent directory.

e In order to PURGE a file or directory on an SRM volume, you need to have
M (manager) access capability on file or directory, as as well as R (read) and
W (write) capabilities on the immediately superior directory and R capability
on all superior directories.

Keyword Dictionary 561

Notes

562 Keyword Dictionary

QUIT

Supported On UX
Option Required n/a
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement cause BASIC to be exited.

Example Statements

QUIT
IF A$="DONE" THEN QUIT

Semantics

When used within a program, this statement stops the program, and then BASIC/UX
exits.

When used as a keyboard command while a program is running, an error is given. You
must first stop (or pause) the program before using the QUIT command.

If a program is not running, then BASIC/UX is exited immediately.

Keyword Dictionary 563

Notes

564 Keyword Dictionary

RAD

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement selects radians as the unit of measure for expressing angles.

Semantics

All functions which return an angle will return an angle in radians. All operations with
parameters representing angles will interpret the angle in radians. If no angle mode is
specified in a program, the default is radians (also see DEG).

A subprogram “inherits” the angle mode of the calling context. If the angle mode is

changed in a subprogram, the mode of the calling context is restored when execution
returns to the calling context.

Keyword Dictionary 565

RANDOMIZE

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement selects a seed for the RND function.

—

Item Description Range
seed numeric expression, rounded to an integer; |1 thru 231_2
Default = pseudo-random

Example Statements

RANDOMIZE
RANDOMIZE 01d_seed+*PI

Semantics

The seed actually used by the random number generator depends on the absolute value
of the seed specified in the RANDOMIZE statement.

Absolute Value
of Seed Value Used
less than 1 1
1 thru 2312 INT(ABS(seed))
greater than 231 -2 2319

The seed is reset to 37 480660 by power-up, SCRATCH A, SCRATCH, and program
prerun.

566 Keyword Dictionary

RANK

Supported On WS, UX
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the number of dimensions in an array. The value returned is an

INTEGER.
D On B s O

Item Description

Range

array name name of an array

Example Statements

*IF RANK(A)=2 THEN PRINT "A is a matrix"
R=RANK (Array)

any valid name

Keyword Dictionary 567

RATIO

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the ratio of the X hard clip limits to the Y hard clip limits for the
current PLOTTER IS device.

Example Statements

WINDOW O, 10%RATIO,-10,10
Turn=1/RATIO

568 Keyword Dictionary

READ

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement reads values from DATA statements and assigns them to variables.

> 1,

|

.

1
beginning
position

ending
position
substring
length

numeric
name

subscript

{))
g

Keyword Dictionary 569

Item Description Range

numeric name name of a numeric variable any valid name

string name name of a string variable any valid name

subscript numeric expression, rounded to an integer | —32 767 thru +32 767
(see “array” in Glossary)

beginning numeric expression, rounded to an integer |1 thru 32 767 (see

position “substring” in Glossary)

ending position |numeric expression, rounded to an integer |0 thru 32 767 (see
“substring” in Glossary)

substring length | numeric expression, rounded to an integer |0 thru 32767 (see
“substring” in Glossary)

Example Statements

READ Number,String$
READ Array(*)
READ Item(1,1),Item(2,1),Item(3,1)

Semantics

The numeric items stored in DATA statements are considered strings by the computer,
and are processed with a VAL function to read into numeric variables in a READ
statement. If they are not of the correct form, error 32 may result. Real DATA items will
be rounded into an INTEGER variable if they are within the INTEGER range (—32 768
through 32 767). When a READ statement contains a COMPLEX variable, that variable
is satisfied with two REAL values. A string variable may read numeric items, as long as
it is dimensioned large enough to contain the characters.

The first READ statement in a context accesses the first item in the first DATA statement
in the context unless RESTORE has been used to specify a different DATA statement
as the starting point. Successive READ operations access following items, progressing
through DATA statements as necessary. Trying to READ past the end of the last DATA
statement results in error 36. The order of accessing DATA statements may be altered
by using the RESTORE statement.

An entire array can be specified by replacing the subscript list with an asterisk. The
array entries are made in row major order (right most subscript varies most rapidly).

570 Keyword Dictionary

READIO

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function reads the contents of the specified hardware register on the specified
interface, or reads the specified byte or word of memory.

interface register
READIO)—={(() O O

Item Description Range
select code numeric expression, rounded to an integer |1 thru 31 and -31 thru -1;
+9826; 9827

register number |numeric expression, rounded to an integer |hardware-dependent
or
memory address

Note
Unexpected results may occur with select codes 9826 and 9827.

Example Statements

Upper_byte=READIO(Gpio,4)

PRINT "Register";I;"=";READIO(7,I)
Peek_byte=READI0(9826,Mem_addr)
Var_addr=READIO (9827, Integer_array)

Keyword Dictionary 571

Semantics

Positive select codes do a byte read (appropriate for most device registers); negative
select codes do a word read.

Reading Memory (“Peek”)

Select code 9826 is used to read a byte of memory, while —9826 is used to read a word (16
bits) of memory. The second parameter specified in the READIO function is the memory
address of the byte to be read. This parameter is interpreted as a decimal address; for
instance, an address of 100000 is 10”5, not 2" 20.

Determining the Location of Numeric Variables

Select code 9827 is used to determine the memory address of a BASIC variable. You can
use this address, for instance, with WRITEIO to perform a JSR (“Jump to SubRoutine”)
instruction in machine language, execute the instructions contained in the array, and then
return to BASIC. (See WRITEIO for details.)

BASIC/UX Specifics
You are restricted to memory access within your own process space.

572 Keyword Dictionary

READ LABEL

Supported On WS, UX
Option Required MS
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement reads a volume label into a string variable.

(reap LaseL)] 357309, | . J
=
1’(’:“0"}_—' spggi:?er‘

Item | Description I Range
string variable string variable which returns the volume —
name
volume specifier | string expression; (see MASS STORAGE
Default = the default mass storage unit IS)

Example Statements

READ LABEL Volume_name$ FROM ":INTERNAL,4,1"
IF Inserted$="Yes" THEN READ LABEL Vol_label$ FROM Vol_specifier$

Semantics

A LIF or HFS volume label consists of a maximum of 6 characters. SRM volumes can
have labels up to 16 characters.

BASIC/UX Specifics
READ LABEL does not work for HFS in BASIC/UX.

Keyword Dictionary 573

READ LOCATOR

This statement samples the locator device, without waiting for a digitizing operation.

(READ LOCATOR)—|

x coordinate

y coordinate
name name

Item

Description

Supported On
Option Required
Keyboard Executable
Programmable

In an IF.. THEN

]
|
string
name

Range

x coordinate
name

y coordinate
name

string name

name of a numeric variable

name of a numeric variable

name of a string variable

Example Statements

READ LOCATOR X_pos,Y_pos
READ LOCATOR X,Y,Status$

Semantics

Executing this statement issues a request to the current locator device to return a set of
coordinates. The coordinates are sampled immediately, without waiting for a digitizing
action on the part of the user. GRAPHICS INPUT IS is used to establish the current
locator device. The returned coordinates are in the unit-of-measure currently defined
for the PLOTTER IS and GRAPHICS INPUT IS devices. The unit-of-measure may
be default units or those defined by either the WINDOW or SHOW statement. If an
INTEGER numeric variable is specified, and the value returned is out of range, Error 20

is reported.

574 Keyword Dictionary

any valid name

any valid name

any valid name

The optional string variable is used to input the device status of the GRAPHICS INPUT
IS device. This status string contains eight bytes, defined as follows.

Byte 1 2 3 4 5 6 7 8
Meaning Digitize) Point , Tracking ,

Status Significance On/Off Button {\lumber
Byte 1: Button status; This value represents the status of the digitizing

Bytes 2, 4, and 6:
Byte 3:

Byte 5:
Bytes 7 and 8:

button on the locator. A “0” means the button is not depressed, and
a “1” means the button is depressed. This is an unprocessed value,
and a “1” does not necessarily represent successful digitization. If
the numeric value represented by this byte is used as the pen control
value for a PLOT statement, continuous digitizing will be copied to
the display device.

commas; used as delimiters.

Significance of digitized point; “0” indicates that the point is outside
the P1, P2 limits; “1” indicates that the point is outside the viewport,
but inside the P1, P2 limits; “2” indicates that the point is inside
the current viewport limits.

Tracking status; “0” indicates off, “1” indicates on.

The number of the buttons which are currently down. To interpret
the ASCII number returned, change the number to its binary form
and look at each bit. If the bit is ”1”, the corresponding button is
down. If the bit is ”0”, the corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of proximity, a
“button 7” is indicated in the “button number” bytes. The number
will be exactly “64”, regardless of whether any actual buttons are
being held down at the time. The HP 9111A always returns “00” in
bytes 7 and 8.

Keyword Dictionary 575

REAL

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN No

This statement reserves storage for floating-point variables and arrays. (For information
about the REAL function, see the next entry in the keyword dictionary; for information
about using REAL as a secondary keyword, see the ALLOCATE, COM, DEF FN, or

SUB statements.)

(D
S 1
nunmae":‘elc >
(D
{ ™
(- bouna)
e
Item Description Range
numeric name name of a numeric variable any valid name
lower bound integer constant; —32767 thru +32 767
Default = OPTION BASE value (0 or 1) (see ”array” in Glossary)
upper bound integer constant ~32767 thru +32 767
(see ”array” in Glossary)

Example Statements

REAL X,Y,Z
REAL Array(-128:127,15)
REAL A(512) BUFFER

576 Keyword Dictionary

Semantics

Each REAL variable or array element requires eight bytes of number storage. The
maximum number of subscripts in an array is six, and no dimension may have more than
32 767 elements.

The total number of REAL variables is limited by the fact that the maximum memory
usage for all variables—COMPLEX, INTEGER, REAL, and string—within any context
is 224—1, or 16 777 215, bytes (or limited by the amount of available memory, whichever
is less).

Declaring Buffers

To declare REAL variables to be buffers, each variable’s name must be followed by the
keyword BUFFER; the designation BUFFER applies only to the variable which it follows.

Keyword Dictionary 577

REAL (function)

Supported On WS, UX
Option Required COMPLEX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the real part of a COMPLEX number.

GO N0

Range
Item Description/Default Restrictions
argument numeric expression any valid INTEGER,

REAL, or COMPLEX value

Example Statements

X=REAL (Complex_expr)
Y=REAL (Real_expr)

Z=REAL (Integer_expr)
Result=REAL(CMPLX(2.1,-8))

Semantics
An INTEGER or REAL argument is returned unchanged.

RECORDS

See the TRANSFER statement.

RECOVER

See the ON... statements.

578 Keyword Dictionary

RECTANGLE

Supported On WS, UX
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement draws a rectangle. It can be filled, edged, or both.

(rectaneLe Y+ wiacn J_.Q—-@ -
FILL 1
Item | Description | Range
width numeric expression —
height numeric expression —

Example Statements

RECTANGLE 4,6
RECTANGLE 3,-2,FILL,EDGE

Semantics

The rectangle is drawn with dimensions specified as displacements from the current pen
position. Thus, both the width and the height may be negative.

Which corner of the rectangle is at the pen position at the end of the statement depends
upon the signs of the parameters:

Corner of
Sign Sign Rectangle
of X of Y at Pen Position
+ + Lower left
+ - Upper left
- + Lower right
- - Upper right

Keyword Dictionary 579

Shape of Rectangle

A rectangle’s shape is affected by the current viewing transformation. If isotropic units
are in effect, the rectangle will be the expected shape, but if ansiotropic units are in
effect, the rectangle will be distorted: stretched or compressed along the axes.

RECTANGLE is affected by the PIVOT and PDIR transformations. If a rotation
transformation and anisotropic units are in effect, the rectangle is rotated first, then
stretched or compressed along the unrotated axes.

FILL and EDGE

FILL causes the rectangle to be filled with the current fill color, and EDGE causes the
perimeter to be drawn with the current pen color and line type. If both FILL and EDGE
are specified, the interior will be filled, then the edge will be drawn. If neither FILL nor
EDGE is specified, EDGE is assumed.

Rectangles sent to an HPGL plotter are edged but not filled regardless of any FILL or
EDGE directives on the statement.

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR | PDIR
Lines (generated by moves and X X Note 4
draws) .
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

580 Keyword Dictionary

REDIM

Supported On WS, UX
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement changes the subscript range of previously dimensioned arrays.

D

array
n

W ~.
;/(\ (\J upper
ame u bound

Item

Description

Range

array name

lower bound

upper bound

name of an array

numeric expression, rounded to an integer;
Default=OPTION BASE value (0 or 1)

numeric expression, rounded to an integer

‘Example Statements

REDIM Array(5)

REDIM B(3:5,6,-2:2)
REDIM Constants$(X,Y,Z)

any valid name

—32 768 thru +32 767
(see “array” in glossary)

—32768 thru +32 767
(see “array” in glossary)

Keyword Dictionary 581

Semantics

The following rules must be followed when redimensioning an array:

e The array to be redimensioned must have a currently dimensioned size known to the
context (i.e., it must have been implicitly or explicitly dimensioned, or be currently
allocated, or it must have been passed into the context.)

e You must retain the same number of dimensions as specified in the original
dimension statement.

e The redimensioned array cannot have more elements than the array was originally
dimensioned to hold.

e You cannot change the maximum string length of string arrays.

REDIM does not change any values in the array, although their locations will probably
be different. The REDIM is performed left-to-right and if an error occurs, arrays to the
left of the array the error occurs in will be redimensioned while those to the right will
not be. If an array appears more than once in the REDIM, the right-most dimensions
will be in effect after the REDIM.

582 Keyword Dictionary

REM

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN No

This statement allows comments in a program.

REM >
O |

Item | Description Range

literal string constant composed of characters from | —
the keyboard, including those generated with
the ANY CHAR key

Example Program Lines

100 REM Program Title
190 !
200 IF BIT(Info,2) THEN Branch ! Test overrange bit

Semantics

REM must be the first keyword on a program line. If you want to add comments to a
statement, an exclamation point must be used to mark the beginning of the comment.
If the first character in a program line is an exclamation point, the line is treated like a
REM statement and is not checked for syntax.

Keyword Dictionary 583

REMOTE

Supported On WS, UX
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement places HP-IB devices having remote/local capabilities into the remote
state.

(Cremore)—r—=(&) "one™

device
selector

Item I Description I Range
I/O path name name assigned to a device or devices any valid name
(see ASSIGN)
device selector numeric expression, rounded to an integer | (see Glossary)

Example Statements

REMOTE 712
REMOTE QHpib

Semantics

If individual devices are not specified, the remote state for all devices on the bus having
remote/local capabilities is enabled. The bus configuration is unchanged, and the devices
switch to remote if and when they are addressed to listen. If primary addressing is used,
only the specified devices are put into the remote state.

When the computer is the system controller and is switched on, reset, or ABORT is
executed, bus devices are automatically enabled for the remote state and switch to remote

when they are addressed to listen.

The computer must be the system controller to execute this statement, and it must be
the active controller to place individual devices in the remote state.

584 Keyword Dictionary

Summary of Bus Actions

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
REN
. ATN
Active REN MTA Error
Controller UNL
LAG
Not Active
Controller REN Error

Keyword Dictionary 585

REN

Supported On

Option Required
Keyboard Executable
Programmable

In an IF...THEN

This command allows you to renumber all or a portion of the program currently in

memory.

REN

starting
value

beginning

line number

beginning
line label

ending
line number

ending
line label

Item Description Range

starting value integer constant identifying a program line; |1 thru 32 766
Default = 10

increment integer constant; Default = 10 1 thru 32767
beginning line integer constant identifying program line 1 thru 32766
number
beginning line name of a program line any valid name
label
ending line integer constant identifying program line; 1 thru 32766
number Default = last program line
ending line name of a program line any valid name
label

586 Keyword Dictionary

WS, UX

Example Statements

REN
REN 1000,5
REN 270,1 IN 260,Labell

Semantics

The program segment to be renumbered is delimited by the beginning line number or
label (or the first line in the program) and the ending line number or label (or the last line
in the program). The first line in the renumbered segment is given the specified starting
value, and subsequent line numbers are separated by the increment. If a renumbered
line is referenced by a statement (such as GOTO or GOSUB), those references will be
updated to reflect the new line numbers. Renumbering a paused program causes it to
move to the stopped state.

REN cannot be used to move lines. If renumbering would cause lines to overlap preceding
or following lines, an error occurs and no renumbering takes place.

If the highest line number resulting from the REN command exceeds 32 766, an error

message is displayed and no renumbering takes place. An error occurs if the beginning
line is after the ending line, or if one of line labels specified doesn’t exist.

Keyword Dictionary 587

RENAME

Supported On
Option Required

Keyboard Executable
Programmable

In an IF..

This statement changes a file’s or directory’s name.

CREN AMQ__I sooleoc]ffi]leer l__.(10 H npeewC xfflleeer‘}_.'

literal form of file specifier:

f)le

. THEN

1 name [

dxrectory
pat

HFS aor SAM files only

LIF protect
code
SRM

password

literal form of directory specifier

c:rectory

(..) I
volume
specifier

directary
path

588 Keyword Dictionary

name
SRM volume
passworu SDec1f1er

WS, UX
None

Item

Description

Range

old file specifier

new file specifier

old directory
specifier

new directory
specifier

directory path

file name

LIF protect code

SRM password

volume specifier

directory name

string expression

string expression

string expression

string expression

literal

literal

literal; first two non-blank characters are

significant

literal; first 16 non-blank characters are sig-

nificant
literal

literal

(see “file specifier” drawing)
(see “file specifier” drawing)

(see “directory specifier”
drawing)

(see “directory specifier”
drawing)

(see MASS STORAGE IS)

depends on volume’s
format:

10 characters for LIF;

14 characters for HFS (short
file name);

255 characters for HF'S (long
file name);

16 characters for SRM;

(see Glossary)

> not allowed
> not allowed

(see MASS STORAGE IS)

depends on volume’s
format:

10 characters for LIF;

14 characters for HFS (short
file name);

255 characters for HF'S (long
file name);

16 characters for SRM;

(see Glossary)

Keyword Dictionary 589

Example Statements

RENAME "0ld_name" TO "New_name"
RENAME File_name$&Vol$ TO Temp$
RENAME "TEMP<pc>" TO "FINAL"

RENAME Dir$&File$&Volume$

RENAME "/WORKSTATIONS/AUTOST" TO "old_autost"

RENAME "Dir1<SRM_RW_pass>/F1<MGR_pass>" TO "Dir2<RW_pass>/F1"
RENAME "Dir1/Dir2/MoveFile:REMOTE" TO "./Dir3/ToOtherDir"

Semantics

The new file or directory name must not duplicate the name of any other file in the
directory.

SRM files and directories must be closed before being renamed.

e Files are closed by ASSIGN..TO = (explicitly closes an I/O path). All files
except those opened with the PRINTER IS statement are also closed by
((SHIFTH PAUSE] or (shift H{ Break]). A PRINTER IS file can be closed by executing a
PRINTER IS to another device or file. A PLOTTER IS file can also be closed by
GINIT or PLOTTER IS to another device or file.

e The current working directory is closed by an MSI to a different directory.

SCRATCH A also closes all files and directories.

Because you cannot move a file from one mass storage volume to another with RENAME,
an error will be given if a volume specifier is included which is not the current location
of the file. (However, RENAME can perform limited file-move operations with SRM and
HF'S files. See details below.)

LIF Protect Codes
A protected file retains its old protect code, which must be included in the old file
specifier.

HFS Permissions

In order to RENAME a file or directory on an HFS volume, you need to have W (write)
and X (search) permission of the immediately superior directory, as well as X (search)
permission on all other superior directories.

590 Keyword Dictionary

SRM Passwords

In order to RENAME an SRM file or directory, you need to have M (manager) access
capability on the file or directory, R (read) and W (write) capabilities on the immediately
superior directory, and R capabilities on all other superior directories.

Including an SRM password in the file or directory specifier does not protect it. You must
use PROTECT to assign passwords. You will not receive an error message for including
a password, but passwords in the “new file/directory name” portion of the RENAME
statement are ignored. However, any existing SRM password is retained by the renamed

file or directory.

SRM File and Directory Specifier Length

A maximum of nine names (files or directories) are allowed in both file or directory
specifiers in the RENAME statement. (The number of names in the old file/directory
specifier plus the number of names in the new file/directory specifier must not exceed
nine.) No more than six names are allowed in either file specifier individually.

Limited File Moves with SRM and HFS

With SRM and HFS, RENAME can be used to move files within the directory structure.
Directories cannot be moved with RENAME. Moving of files must occur within a single
volume. If you move a file with RENAME, the original file (“old file specifier”) is purged.

BASIC/UX Specifics
RENAMEing across volumes is allowed.

REORDER

See the MAT REORDER statement.

Keyword Dictionary 591

REPEAT...UNTIL

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN No

This construct defines a loop which is repeated until the boolean expression in the UNTIL
statement evaluates to be logically true (evaluates to non-zero).

REPEAT
program

UNTIL eiﬁﬁlgiﬁzn

Item Description Range
boolean numeric expression; evaluated as true if non- | —
expression zero and false if zero

program segment | any number of contiguous program lines not | —
containing the beginning or end of a main
program or subprogram, but which may con-
tain properly nested constructs(s).

Example Program Segments

530 REPEAT

540 PRINT Factor

550 Factor=Factorx1.1
560 UNTIL Factor>10

680 REPEAT

690 INPUT "Enter a positive number",Number
700 UNTIL Number>=0

592 Keyword Dictionary

Semantics

The REPEAT...UNTIL construct allows program execution dependent on the outcome
of a relational test performed at the end of the loop. Execution starts with the first
program line following the REPEAT statement, and continues to the UNTIL statement
where a relational test is performed. If the test is false a branch is made to the first
program line following the REPEAT statement.

When the relational test is true, program execution continues with the first program line
following the UNTIL statement.

Branching into a REPEAT...UNTIL construct (via a GOTO) results in normal execution
up to the UNTIL statement, where the test is made. Execution will continue as if the
construct had been entered normally.

Nesting Constructs Property

REPEAT...UNTIL constructs may be nested within other constructs provided the inner
construct begins and ends before the outer construct can end.

Keyword Dictionary 593

REQUEST

Supported On WS, UX
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement is used by a non-active controller to send a Service Request (SRQ) on an
HP-IB interface.

serial poll

I/0 path
REGUEST O KEES o 2@

select code

Item Description Range
I/0 path name name assigned to an HP-IB interface any valid name
interface select numeric expression, rounded to an integer |7 thru 31
code
serial poll numeric expression, rounded to an integer |0 thru 255
response byte

Example Statements

REQUEST QHp_ib;Bit_6+Bit_0
REQUEST Isc;Response

Semantics

To request service, the value of the serial poll response must have bit 6 set; this bit
asserts the SRQ line. SRQ will remain set until either the Active Controller performs a
Serial Poll or until the computer executes another REQUEST with bit 6 clear.

Only the interface select code may be specified to receive the Request; if a device selector
that contains address information, or an I/O path assigned to a device selector with
address information is specified, an error results. An error will also results if the computer
is currently the Active Controller.

594 Keyword Dictionary

RES

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the result of the last numeric computation which was executed
from the keyboard.

Example Statements

RES
3.5+RES+A

Keyword Dictionary 595

RE-SAVE

Supported On WS, UX
Option Required Edit
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement creates a specified ASCII file if it does not exist; otherwise, it re-writes a
specified ASCII or HP-UX file by copying program lines as strings into that file.

fil
(RE_SA@—.’{SDE clx fe] er }

literal form of file specifier

beginning

line number

beginning
line label

ending
line number

ending
line label

" l file l n
name [
directory SRM volume
path password specifier
______Y______J

HFS or SRM files only

596 Keyword Dictionary

Item Description Range

file specifier string expression (see drawing)

beginning line integer constant identifying program line; 1 thru 32766

number Default = first program line

beginning line la- | name of a program line any valid name

bel

ending line num- | integer constant identifying a program line; |1 thru 32 766

ber Default = last program line

ending line label |name of a program line any valid name

directory path literal (see MASS STORAGE 1S)
file name literal depends on volume’s format

(see Glossary)

SRM password literal; first 16 non-blank characters are sig- | > not allowed
nificant

volume specifier | literal (see MASS STORAGE IS)

Example Statements

RE-SAVE "NailFile"
RE-SAVE Name$,1,Sort
RE-SAVE "Dir<SRM_RW_pass>/File<SRM_RW_pass>"

Semantics

An entire program can be saved, or the portion delimited by beginning and (if needed)
ending line labels or line numbers. If the file name already exists, the old file entry is
removed from the directory after the new file is successfully saved on the mass storage
media. Attempting to RE-SAVE any existing file that is not an ASCII or HP-UX text
file results in an error. (Note that if you RE-SAVE an existing HP-UX text file, a new
HP-UX file will be created; otherwise, an ASCII file will be created.)

If the file does not already exist, RE-SAVE performs the same action as SAVE.
Pressing during a RE-SAVE operation results in the old file being retained.

If a specified line label does not exist, error 3 occurs. If a specified line number does not
exist, the program lines with numbers inside the range specified are saved. If the ending
line number is less than the beginning line number, error 41 occurs.

Note that both hard and symbolic links to a file are broken by RE-SAVE (see LINK).

Keyword Dictionary 597

HFS Permissions

In order to RE-SAVE a file on an HF'S volume, you need to have W (write) permission on
the file (if one already exists), W (write) and X (search) permission of the immediately
superior directory, as well as X permission on all other superior directories. If a file
already exists, its permission bits will be preserved.

SRM Access Capabilities

In order to RE-SAVE an SRM file, you need to have R (read) and W (write) access
capabilities on the file (if one already exists), R and W capabilities on the immediately
superior directory, and R capabilities on all other superior directories.

If the file exists and is read/write protected, you must specify the correct password with
RE-SAVE. If you specify the wrong password on a protected file, the system returns an
error. Any existing SRM password is retained by the re-saved file.

If the file does not exist, including an SRM password with the file name does not protect
the file. You must use PROTECT to assign a password. You will not receive an error
message for including a password, but a password in the file name portion of the RE-
SAVE statement will be ignored.

RE-SAVE on SRM Files
RE-SAVE opens the remote file in exclusive mode (denoted as LOCK in a CAT listing)
and enforces that status on the file until the RE-SAVE is complete. While in exclusive

mode, the file is inaccessible to all SRM workstations other than the one executing the
RE-SAVE.

Use of RE-SAVE on SRM and HFS may leave temporary files on the mass storage
media if [CLR 170] ([Break]) or [RESET] ([SHIFT}{ PAUSE] or [Shift}{ Break]) is pressed or a
TIMEOUT occurs during the RE-SAVE. The file name of the temporary file is a 10-
character name (the first is an alpha character, others are digits) derived from the value
of the workstation’s real-time clock when the interruption occurred. You may wish to
check the contents of any such file before purging.

BASIC/UX Specifics
The temporary file name begins with rmbt followed by a letter and the BASIC/UX process
id.

598 Keyword Dictionary

RESET

Supported On WS, UX
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement resets an interface or the pointers of either a mass storage file or
buffer. (For information about RESET as a secondary keyword, see the SUSPEND
INTERACTIVE statement.)

ED-EET]

select code

Item] Description Range

I/O path name |name assigned to an interface, mass storage | any valid name
file, or buffer

interface select numeric expression, rounded to an integer |7 thru 31
code

Example Statements

RESET Hpib
RESET 20
RESET Q@Buffer_x

Keyword Dictionary 599

Semantics

A RESET directed to an interface initiates an interface-dependent action; see the
“Interface Registers” section for further details.

A RESET directed to a mass storage file resets the file pointer to the beginning of the
file.

A RESET directed to a buffer resets all registers to their initial values: the empty and
fill pointers are set to 1, and the current-number-of-bytes and all other registers are reset
to zero.

If a TRANSFER is currently being made to or from the specified resource, the computer
waits until the TRANSFER is complete before executing the RESET. If the TRANSFER
is not to be completed, an ABORTIO may be executed to halt the TRANSFER before
executing the RESET. If a busy buffer is specified in a RESET statement, error 612
results.

600 Keyword Dictionary

RESTORE

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

RESTORE specifies which DATA statement will be used by the next READ operation.

Item | Description Range
line label name of a program line any valid name
line number integer constant identifying a program line; |1 thru 32766

Default = first DATA statement in context

Example Statements

RESTORE
RESTORE Third_array

Semantics

If a line is specified which does not contain a DATA statement, the computer uses the
first DATA statement after the specified line. RESTORE can only refer to lines within
the current context. An error results if the specified line does not exist.

Keyword Dictionary 601

RE-STORE

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement creates a file and stores the program or typing-aid softkey definitions in

it.

(RE-STORE }-

literal form of file

specifier:

Ifllel

file
specifier

(Il>
directory
path

| S
HFS or SAM files only

Item

L name [

Description

- < L)) I
volume
specifier

Range

file specifier
directory path

file name

LIF protect code

SRM password

volume specifier

string expression

literal

literal

(see drawing)
(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)

literal; first two non-blank characters are|> not allowed

significant

literal; first 16 non-blank characters are sig- | > not allowed

nificant

literal

602 Keyword Dictionary

(see MASS STORAGE IS)

Example Statements

RE-STORE Filename$&Volume$
RE-STORE "Prog_a"
RE-STORE "Dir<SRM_RW_pass>/Prog_z<SRM_RW_pass>"

RE-STORE KEY "Typing_aids"
RE-STORE KEY "KEYS:REMOTE"

Semantics

If the specified file already exists, the old file is removed from the directory after the new
file is successfully stored in the current mass storage device. If an old file does not exist,
a new one is created as if this were the STORE statement.

Pressing during a RE-STORE operation causes the old file to be retained. (See
note below for effects on an SRM system.)

LIF Protect Codes

If the old file had a protect code, the same protect code must be used in the RE-STORE
operation. Attempting to RE-STORE a file which is the wrong type results in an error.
(RE-STORE creates a PROG file, and RE-STORE KEY creates a BDAT file.)

HFS Permissions

In order to RE-STORE a file on an HFS volume, you need to have W (write) permission
on the file (if one already exists), W (write) and X (search) permission of the immediately
superior directory, as well as X permission on all other superior directories. If the file
already exists, its permission bits will be preserved.

SRM Access Capabilities

In order to RE-STORE an SRM file, you need to have R (read) and W (write) access
capability on the file (if one already exists), R (read) and W (write) capabilities on the
immediately superior directory, and R capability on all other superior directories.

If the file exists and is read/write protected, you must specify the correct password with
RE-STORE. If you specify the wrong password on a protected file, the system returns
an error. Any existing SRM password is retained by the re-saved file.

If the file does not exist, including an SRM password with the file name does not protect
the file. You must use PROTECT to assign a password. You will not receive an error
message for including a password, but a password in the file name portion of the RE-
STORE statement will be ignored.

Keyword Dictionary 603

RE-STORE with SRM Volumes
RE-STORE opens an SRM file in exclusive mode (denoted as LOCK in a CAT listing)
and enforces that status on the file until the RE-STORE is complete. While in exclusive

mode, the file is inaccessible to all SRM workstations other than the one executing the
RE-STORE.

Use of RE-STORE on SRM or HFS may leave temporary files on the mass storage media
if (CLR_170] ([Break]) or {RESET] is pressed or a TIMEOUT occurs during the RE-STORE.
The file name of the temporary file is a 10-character name (the first is an alpha character,
others are digits) derived from the value of the workstation’s real-time clock when the
interruption occurred. You may wish to check the contents of any such file before purging.

BASIC/UX Specifics

The temporary file name begins with rmbt followed by a letter and the BASIC/UX process
id.

604 Keyword Dictionary

RESUME INTERACTIVE

Supported On WS, UX
Option Required None
Keyboard Executable Yes!
Programmable Yes
In an IF...THEN Yes

This statement enables the [EXECUTE], [ENTER], [Return], [PAUSE], [STOP], [STEP], [CLR 170},
(Break] and [RESET] keys after a SUSPEND INTERACTIVE statement.

RESUME INTERACTIVE

Example Statements

RESUME INTERACTIVE
IF Kbd_flag THEN RESUME INTERACTIVE

! This statement is executable from the keyboard, but only while SUSPEND INTERACTIVE is not in
effect.

Keyword Dictionary 605

RETURN

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN Yes

This statement returns program execution to the line following the invoking GOSUB.
The keyword RETURN is also used in user-defined functions (see DEF FN).

See also ERROR RETURN.

606 Keyword Dictionary

REV$

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns a string formed by reversing the sequence of characters in the
specified string.

string
expression

Example Statements

Reverse$=REV$ ("palindrome")
Last_blank=LEN(Sentence$) -POS(REV$(Sentence$) ," ")

Semantics

The REV$ function is useful when searching for the last occurrence of an item within a
string.

Keyword Dictionary 607

RND

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns a pseudo-random number greater than 0 and less than 1.

Example Statements

Percent=RND*100
IF RND<.5 THEN Casel

Semantics

The random number returned is based on a seed set to 37480660 at power-on,
SCRATCH, SCRATCH A, or program prerun. Iach succeeding use of RND returns
a random number which uses the previous random number as a seed. The seed can be
modified with the RANDOMIZE statement.

608 Keyword Dictionary

ROTATE

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns an integer which equals the value obtained by shifting the 16-bit
binary representation of the argument by the number of bit positions specified. The shift
is performed with wrap-around.

bit position
ROTATE o 0 displacement o

Item l Description | Range
argument numeric expression, rounded to an integer | —32 768 thru 432 767
bit position numeric expression, rounded to an integer | —15 thru +15
displacement

Example Statements

New_word=ROTATE(01d_word,2)
Q=ROTATE(Q,Places)

Semantics

The argument is converted into a 16-bit, two’s-complement form. If the bit position
displacement, is positive, the rotation is towards the least-significant bit. If the bit
position displacement is negative, the rotation is towards the most-significant bit. The
rotation is performed without changing the value of any variable in the argument.

Keyword Dictionary 609

RPLOT

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement moves the pen from the current pen position to the point specified by
adding the x and y displacements to the local origin. It can be used to move with or
without drawing a line depending on the pen control parameter.

X
displacement

X

y
displacement

Item Description Range
x displacement numeric expression in current units —
y displacement numeric expression in current units -
pen control numeric expression, rounded to an integer; —32 768 thru +32 767
Default = 1
array name name of two-dimensional, two-column or any valid name

three-column numeric array.
Requires GRAPHX

Example Statements

RPLOT Rel_x,Rel_y,Pen_action
RPLOT 5,12
RPLOT Shape(*),FILL,EDGE

610 Keyword Dictionary

Semantics

This statement moves the pen to the specified X and Y coordinates relative to the local
coordinate origin. Both moves and draws may be generated, depending on the pen
control parameter. Lines are drawn using the curren pen color and line type.

The local coordinate origin is the logical pen position at the completion of one of
the following statements. The local coordinate origin is not changed by the RPLOT
statement.

AXES DRAW FRAME GINIT GRID IDRAW IMOVE
IPLOT LABEL MOVE PLOT POLYGON POLYLINE RECTANGLE
SYMBOL

The line is clipped at the current clipping boundary. RPLOT is affected by the PIVOT
and PDIR transformations. If none of the line is inside the current clip limits, the pen
is not moved, but the logical pen position is updated.

Non-Array Parameters
The specified X and Y displacements information is interpreted according to the current

unit-of-measure. Lines are drawn using the current pen color and line type.

If none of the line is inside the current clip limits, the pen is not moved, but the logical
pen position is updated.

Keyword Dictionary 611

Applicable Graphics Transformations

Scaling | PIVOT | CSIZE | LDIR PDIR
Lines (generated by moves and X X Note 4
draws)
Polygons and rectangles X X X
Characters (generated by LABEL) X X
Axes (generated by AXES & GRID) X
Location of Labels Note 1 Note 3 Note 2

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.
Note 2: The starting point for labels drawn after other labels is affected by LDIR.
Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.
Note 4: RPLOT and IPLOT are affected by PDIR.

The optional pen control parameter specifies the following plotting actions; the default
value is +1 (down after move).

Pen Control Parameter

Pen Controll Resultant Action
—Even Pen up before move
—0dd Pendown before move
+Even Pen up after move
+0dd Pen down after move

The above table is summed up by: even is up, odd is down, positive is after pen motion,
negative is before pen motion. Zero is considered positive.

Array Parameters

When using the RPLOT statement with an array, either a two-column or a three-column
array may be used. If a two-column array is used, the third parameter is assumed to be
+1; pen down after move.

612 Keyword Dictionary

FILL and EDGE

When FILL or EDGE is specified, each sequence of two or more lines forms a polygon.
The polygon begins at the first point on the sequence, includes each successive point,
and the final point is connected or closed back to the first point. A polygon is closed
when the end of the array is reached, or when the value in the third column is an even
number less than three, or in the range 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the RPLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current
pen color. If polygon mode is entered from within the array, and the FILL/EDGE
directive for that series of polygons differs from the FILL/EDGE directive on the RPLOT
statement itself, the directive in the array replaces the directive on the statement. In
other words, if a “start polygon mode” operation selector (a 6, 10, or 11) is encountered,
any current FILL/EDGE directive (whether specified by a keyword or an operation
selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the RPLOT statement, FILL occurs first. If
neither one is specified, simple line drawing mode is assumed; that is, polygon closure
does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will
be edged, regardless of the directives on the statement.

When using a RPLOT statement with an array, the following table of operation selectors
applies. An operation selector is the value in the third column of a row of the array to
be plotted. The array must be a two-dimensional, two-column or three-column array. If
the third column exists, it will contain operation selectors which instruct the computer
to carry out certain operations. Polygons may be defined, edged (using the current pen),
filled (using the current fill color), pen and line type may be selected, and so forth.

Keyword Dictionary 613

Operation

Column 1 | Column 2 Selector Meaning
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving (Same as +2)
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number ignored 3 Select pen
line type repeat value 4 Select line type
color ignored 5 Color value
ignored ignored 6 Start polygon mode with FILL
ignored ignored 7 End polygon mode
ignored ignored 8 End of data for array
ignored ignored 9 NOP (no operation)
ignored ignored 10 Start polygon mode with EDGE
ignored ignored 11 Start polygon mode with FILL and EDGE
ignored ignored 12 Draw a FRAME
pen number ignored 13 Area pen value
red value green value 14 } Color
blue value ignored 15 Value
ignored ignored >15 Ignored

Moving and Drawing

If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array RPLOT statement. Even is up, odd is
down, positive is after pen motion, negative is before pen motion. Zero is considered

positive.

Selecting Pens

An operation selector of 3 selects a pen. The value in column one is the pen number

desired. The value in column two is ignored.

614 Keyword Dictionary

Selecting Line Types

An operation selector of 4 selects a line type. The line type (column one) selects the
pattern, and the repeat value (column two) is the length in GDUs that the line extends
before a single occurrence of the pattern is finished and it starts over. On the CRT,
the repeat value is evaluated and rounded down to the next multiple of 5, with 5 as the
minimum.

Seiecting a Fiil Color
Operation selector 13 selects a pen from the color map with which to do area fills. This
works identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color

Operation selector 14 is used in conjunction with operation selector 15. Red and green
are specified in columns one and two, respectively, and column three has the value 14.
Following this row in the array (not necessarily immediately), is a row whose operation
selector in column three has the value of 15. The first column in that row contains the
blue value. These numbers range from 0 to 32 767, where 0 is no color and 32 767 is full
intensity. Operation selectors 14 and 15 together comprise the equivalent of an AREA
INTENSITY statement, which means it can be used on both a monochromatic and a
color CRT.

Operation selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through
a Red-Green-Blue (RGB) color model. The first column is encoded in the following
manner. There are three groups of five bits right-justified in the word; that is, the
most significant bit in the word is ignored. Each group of five bits contains a number
which determines the intensity of the corresponding color component, which ranges from
zero to sixteen. The value in each field will be sixteen minus the intensity of the color
component. For example, if the value in the first column of the array is zero, all three
five-bit values would thus be zero. Sixteen minus zero in all three cases would turn on all
three color components to full intensity, and the resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red, green,
and blue in the variables R, G, and B, respectively, the value for the first column in the
array could be defined thus:

Array(Row,1)=SHIFT (16 (1-B),-10) +SHIFT (16%(1-G) ,-5) +16*(1-R)
If there is a pen color in the color map similar to that which you request here, that

non-dithered color will be used. If there is not a similar color, you will get a dithered
pattern.

Keyword Dictionary 615

Polygons

A six, ten, or eleven in the third column of the array begins a “polygon mode”. If
the operation selector is 6, the polygon will be filled with the current fill color. If the
operation selector is 10, the polygon will be edged with the current pen number and
line type. If the operation selector is 11, the polygon will be both filled and edged.
Many individual polygons can be filled without terminating the mode with an operation
selector 7. This can be done by specifying several series of draws separated by moves.
The first and second columns are ignored and should not contain the X and Y values of
the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a
polygon to be edged and/or filled and also terminates the polygon mode (entered by
operation selectors 6, 10, or 11). The values in the first and second columns are ignored,
and the X and Y values of the last data point should not be in them. Edging and/or
filling of the most recent polygon will begin immediately upon encountering this operation
selector.

Doing a FRAME

Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits
cannot be changed from within the RPLOT statement, so one probably would not have
more than one operation selector 12 in an array to RPLOT, since the last FRAME will
overwrite all the previous ones.

Premature Termination

Operation selector 8 causes the RPLOT statement to be terminated. The RPLOT
statement will successfully terminate if the actual end of the array has been reached,
so the use of operation selector 8 is optional.

ignoring Selected Rows in the Array

Operation selector 9 causes the row of the array it is in to be ignored. Any operation
selector greater that fifteen is also ignored, but operation selector 9 is retained for
compatibility reasons. Operation selectors less than —2 are not ignored. If the value
in the third column is less than zero, only evenness/oddness is considered.

616 Keyword Dictionary

RPT$

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the string repeated a given number of times.

repeat
)~ (Ol e - O—~ZE0

Item | Description l Range
argument string expression —
repeat factor numeric expression, rounded to an integer |0 thru 32767

Example Statements

PRINT RPT$("*",80)
Center$=RPT$(" ", (Right-Left-Length)/2)

Semantics

The value of the numeric expression is rounded to an integer. If the numeric expression
evaluates to a zero, a null string is returned.

An error will result if the numeric expression evaluates to a negative number or if the
string created by RPT$ contains more than 32 767 characters.

RSUM

See the MAT statement.

Keyword Dictionary 617

RUN

Supported On
Option Required
Keyboard Executable
Programmable

In an IF...THEN

This command starts program execution at a specified line.

WS, UX
None
Yes

No

RUN -
Item l Description Range
line number integer constant identifying a program line; |1 thru 32 766
Default = first program line
line label name of a program line any valid name

Example Statements

RUN 10
RUN Part2

618 Keyword Dictionary

Semantics

Pressing the key is the same as executing RUN with no label or line number. RUN
is executed in two phases: prerun initialization and program execution.

The prerun phase consists of:

o Reserving memory space for variables specified in COM statements (both labeled
and blank). See COM for a description of when COM areas are initialized.

e Reserving memory space for variables specified by DIM, REAL, COMPLEX,
INTEGER, or implied in the main program segment. This does not include
variables used with ALLOCATE, which is done at run-time. Numeric variables
are initialized to O; string variables are initialized to the null string.

e Checking for syntax errors which require more than one program line to detect.
Included in this are errors such as incorrect array references, and mismatched
parameter or COM lists.

If an error is detected during prerun phase, prerun halts and an error message is displayed
on the CRT.

After successful completion of prerun initialization, program execution begins with either
the lowest numbered program line or the line specified in the RUN command. If the line
number specified does not exist in the main program, execution begins at the next higher-
numbered line. An error results if there is no higher-numbered line available within the
main program, or if the specified line label cannot be found in the main program.

Keyword Dictionary 619

Notes

620 Keyword Dictionary

SAVE

Supported On WS, UX
Option Required EDIT
Keyboard Executable Yes
Programmable Yes
In an TIF. . THEN Yes

This statement creates an ASCII file and copies program lines as strings into that file.

SAVE file

specifier|

beginning

line number

ending
line number

ending
line label

literal form of file specifier:

. directory '

path

Iiiii

specifier

HFS or SRM files only

]
s |

Keyword Dictionary 621

Item Description Range
file specifier string expression (see drawing)
beginning line integer constant identifying a program line; |1 thru 32 766

number

beginning line la-
bel

ending line num-
ber

ending line label
directory path

file name

LIF protect code

Default = first program line

name of a program line

integer constant identifying a program line;
Default = last program line

name of a program line
literal

literal

literal; first two non-blank characters are

any valid name
1 thru 32 766

any valid name
(see MASS STORAGE IS)

depends on volume’s format
(see Glossary)

> not allowed

significant
SRM password literal; first 16 non-blank characters are sig- | > not allowed
nificant
volume specifier |literal (see MASS STORAGE IS)

Example Statements

SAVE "WHALES"

SAVE "TEMP",1,Sort

SAVE "Dir<SRM_RW_pass>/File"
SAVE "Ascii_file:REMOTE"

Semantics

An entire program can be saved, or any portion delimited by the beginning and (if needed)
ending line numbers or labels. This statement is for creating new files. Attempting to
SAVE a file name that already exists causes error 54. If you need to replace an old file,
see RE-SAVE.

If a specified line label does not exist. error 3 occurs. If a specified line number does not
exist, the program lines with numbers inside the range specified are saved. If the ending
line number is less than the beginning line number, error 41 occurs. If no program lines
are in the specified range, error 46 occurs.

622 Keyword Dictionary

HFS Permissions and File Headers

In order to SAVE a file on an HFS volume, you need to have W (write) and X (search)
permission of the immediately superior directory, as well as X permission on all other
superior directories.

When a file is saved on an HFS volume, access permission bits are set to RW-RW-RW-,
You can modify the access permission bits with PERMIT if desired. For BASIC/UX,
these permissions are subject to alteration by the user’s umask value, if set. See the
HP-UX Reference, umask(1).

On HFS volumes, SAVE creates an ASCII file that contains a 512-byte header (at the
beginning of the file’s contents). This header allows the BASIC system to recognize the
file as being an ASCII file. (The header is handled automatically by the BASIC system,
so you do not have to take any special actions.)

SRM Passwords and Exclusive Mode
In order to SAVE an SRM file, you need to have R (read) and W (write) capabilities on
the immediately superior directory, and R capabilities on all other superior directories.

Including an SRM password with the file name does not protect the file. You must use
PROTECT to assign passwords. You will not receive an error message for including a
password, but a password in the file name portion of the SAVE statement will be ignored.

SAVE opens an SRM file in exclusive mode (denoted as LOCK in a CAT listing) and

enforces that status on the file until the SAVE is complete. While in exclusive mode, the
file is inaccessible to all SRM workstations other than the one executing the SAVE.

Keyword Dictionary 623

SC

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the interface select code associated with an I/O path name.

I/0 path
name

Item I Description I Range

I/O path name Iname of a currently assigned 1/0O path I any valid name

Example Statements
Isc=SC(Q@Device)

Drive_isc=SC(QFile)
Semantics

If the I/O path name is assigned to a device selector (or selectors) with primary and/or
secondary addressing, only the interface select code is returned. If the specified I/O path
name is assigned to a mass storage file, the interface select code of the drive is returned.
If the specified I/O path name is assigned to a buffer, a zero is returned.

If the I/O path name is not currently assigned to a resource, an error is reported.

BASIC/UX Specifics
If the I/O path name refers to a file on an HFS disk, SC returns the constant value 701.

624 Keyword Dictionary

SCRATCH

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable No
In an IF...THEN No

This command erases all or selected portions of memory.

< SCRATCH } >

Item Description I Range

key number l integer constant |0 thru 23

Keyword Dictionary 625

Example Statements

SCRATCH

SCRATCH A

SCRATCH ALL (BASIC/UX only)

SCRATCH KEY

SCRATCH KEY 21

SCRATCH WINDOW (BASIC/UX under X Windows only)

Semantics

The BASIC Workstation (BASIC/WS) does not support the following secondary key-
words with the keyword SCRATCH:

ALL RECALL
B w
COM WINDOW

Both full names and single character abbreviations for actions are accepted (BASIC/UX
only).

SCRATCH clears the BASIC program and all variables not in COM. Key definitions are
left intact.

SCRATCH C clears all variables, including those in COM. The program and keys are
left intact.

SCRATCH R clears the key buffer.

To scratch a key, type SCRATCH KEY, followed by the key number, and press [EXECUTE],
[ENTER], or [Return]. Also, pressing a softkey after typing SCRATCH will cause SCRATCH KEY,
followed by the key number, to be displayed. When a key is specified, the definition for
that key only is cleared. When an individual key is not specified, all key definitions are
cleared. In either case, the program and all variables are left intact.

SCRATCH A clears the BASIC program memory, all the key definitions, and all variables
(including those in COM). Most internal parameters in the computer are reset by this
command. The clock is not reset and the recall buffer is not cleared. See the Master
Reset Table in the “Useful Tables” section in the back of this manual for details.

626 Keyword Dictionary 98619-90052, rev: 1/89

SCRATCH BIN

SCRATCH BIN causes an extended SCRATCH A. It resets the computer to its power
up state. All programs, variables, and BINs are deleted from memory. The BIN which
contains the CRT driver for the current CRT is not deleted. Note that SCRATCH BIN
will not remove any binaries that reside in ROM.

SCRATCH BIN and SCRATCH B are not supported on BASIC/UX.

SCRATCH A Effects on SRM and HFS Volumes

With SRM volumes, SCRATCH A releases the system resources allocated to the
workstation executing the SCRATCH A, making those resources available to other SRM
workstations. More specifically, SCRATCH A closes all files and directories, and resets
the workstation’s working directory to the root directory of the default volume (the mass
storage volume from which the workstation booted). SCRATCH A also closes files and
directories with HFS volumes.

If the workstation has Boot ROM version 3.0 or A or later, and booted from the SRM,
SCRATCH A resets the working directory to the root of the default system volume.
If the workstation has an earlier version Boot ROM, SCRATCH A resets the working
directory to the device from which the workstation booted (for example, :INTERNAL if
the workstation booted from a built-in drive).

SCRATCH W or SCRATCH WINDOW (BASIC/UX only)
In a windowing environment, this command causes all created windows to be destroyed.
Note that this does not destroy the root BASIC window.

This command is only valid when running within a window system. When not in a
window system, this command causes an error.

SEC

See the SEND statement

Keyword Dictionary 627

SECURE

Supported On WS, UX
Option Required PDEV
Keyboard Executable Yes
Programmable No
In an IF...THEN No

This command protects program lines so that they cannot be listed.

‘ SECURE jk; —]
l | beginning |
line number

ending
line number

Item Description Range
beginning line integer constant; -
number Default = first line in program

ending line num- | integer constant: -
ber Default = beginning line number if specified,
or last line in program

Example Statements
SECURE

SECURE 45

SECURE 1,100
Semantics

If no lines are specified, the entire program is secured. If one line number is specified,
only that line is secured. If two lines are specified, all lines between and including those
lines are secured.

Program lines which are secure are listed as an *. Only the line number is listed.

628 Keyword Dictionary

SELECT...CASE

Supported On WS, UX
Option Required None
Keyboard Executable No
Programmable Yes
In an IF...THEN No

This construct provides conditional execution of one of several program segments.

(SELE@—-I:(pr‘ession '—.'

(D
_/

beginning
match item T0

segment
CASE ELSE

program
segment

END SELECT

Keyword Dictionary 629

Item Description Range

expression a numeric or string expression —

match item a numeric or string expression; must be same | —
type as the SELECT expression

program segment | any number of contiguous program lines not | —
containing the beginning or end of a main
program or subprogram, but which may con-
tain properly nested construct(s).

Example Program Segments

650 SELECT Expression
660 CASE <0

670 PRINT "Negative number"
680 CASE ELSE
690 PRINT "Non-negative number"

700 END SELECT

750 SELECT Expression$
760 CASE "A" TO "Z"

770 PRINT "Uppercase alphabetic"
780 CASE ":ll,ll;ll."."’ll.ll
790 PRINT "Punctuation"

800 END SELECT

630 Keyword Dictionary

Semantics

SELECT...END SELECT is similar to the IF..THEN...ELSE...END IF construct, but
allows several conditional program segments to be defined; however, only one segment
will be executed each time the construct is entered. Each segment starts after a CASE or
CASE ELSE statement and ends when the next program line is a CASE, CASE ELSE,
or END SELECT statement.

The SELECT statement specifies an expression, whose value is compared to the list
of values found in each CASE statement. When a match is found, the corresponding
program segment is executed. The remaining segments are skipped and execution
continues with the first program line following the END SELECT statement.

All CASE expressions must be of the same type, (either string or numeric) and must
agree in type with the corresponding SELECT statement expression.

The optional CASE ELSE statement defines a program segment to be executed when
the selected expression’s value fails to match any CASE statement’s list.

Branching into a SELECT...END SELECT construct (via GOTO) results in normal
execution until a CASE or CASE ELSE statement is encountered. Execution then
branches to the first program line following the END SELECT statement.

Errors encountered in evaluating CASE statements will be reported as having occurred
in the corresponding SELECT statement. '

Nesting Constructs Properly

SELECT...END SELECT constructs may be nested, provided inner construct begins and
ends before the outer construct can end.

Keyword Dictionary 631

SEND

Supported On
Option Required
Keyboard Executable
Programmable

In an IF...THEN

This statement sends messages to an HP-IB.

ASCII space
(space bar)

CMD

ik

1/0 path
name

select code

numeric
expression
string
expression

DATA

-
numeric
expression [
string END
expression
primary |
'(TALK) 'I address |

. primary |

address

Fq
UNL
UNT
MLA
MTA /

632 Keyword Dictionary

WS, UX
10

Yes

Yes

Yes

Item Description Range

interface select numeric expression, rounded to an integer |7 thru 31
code

I/0 path name |name assigned to an interface select code any valid name
(see ASSIGN)

primary address |numeric expression, rounded to an integer |0 thru 31

secondary numeric expression, rounded to an integer [0 thru 31
address

Example Statements

SEND 7;UNL MTA LISTEN 1 DATA "HELLO" END
SEND QHpib;UNL MLA TALK Device CMD 24+128

Semantics

CMD

The expressions following a CMD are sent with ATN true. The ASCII characters
representing the evaluated string expression are sent to the HP-IB. Numeric expressions
are rounded to an integer MOD 256. The resulting byte is sent to the HP-IB. CMD with
no items sets ATN true.

DATA

The expressions following DATA are sent with ATN false. The ASCII characters
representing the evaluated string expression are sent. Numeric expressions are rounded
to an integer MOD 256. The resulting byte is sent to the HP-IB. If END is added to the
data list, EOI is set true before sending the last byte. DATA with no items sets ATN
false without waiting to be addressed as a talker.

If the computer is active controller, and addressed as a talker, the data is sent
immediately. If the computer is not active controller, it waits until it is addressed to
talk before sending the data.

TALK

TALK sets ATN true and sends the specified talk address. Only one primary address is
allowed for a single talker. An extended talker may be addressed by using SEC secondary
address after TALK. A TALK address of 31 is equivalent to UNT (untalk).

Keyword Dictionary 633

UNT
UNT sets ATN true and sends the untalk command. (There is no automatic untalk.) A
TALK address of 31 is equivalent to UNT.

LISTEN
LISTEN sets ATN true, sends one or more primary addresses, and addresses those devices
to listen. A LISTEN address of 31 is equivalent to UNL (unlisten).

UNL
UNL set ATN true and sends the unlisten command. (There is no automatic unlisten.)
A LISTEN address of 31 is equivalent to UNL.

SEC

SEC sets ATN true and sends one or more secondary addresses (commands).

MTA

MTA sets ATN true and sends the interface’s talk address. It is equivalent to performing
a status sequence on the interface and then using the returned talk address with a
SEND.. TALK sequence.

MLA
MLA sets ATN true and sends the interface’s listen address. It is equivalent to performing

a status sequence on the interface and then using the returned listen address with a
SEND..LISTEN sequence.

Summary
The computer must be the active controller to execute SEND with CMD, TALK, UNT,
LISTEN, UNL, SEC, MTA and MLA.

The computer does not have to be the active controller to send DATA. DATA is sent
when the computer is addressed to talk.

The following table lists the HP-IB message mnemonics, descriptions of the messages,

and the secondary keywords required to send the messages. Any numeric values are
decimal.

634 Keyword Dictionary

Mnemonic Description Secondary Keyword and Value
DAB Data Byte DATA 0 thru DATA 255
DCL Device Clear CMD 20 or CMD 148
EOI End or Identify DATA (data) END (sends EOI with ATN false, which is the
END message; EOI with ATN true is the Identify message,
sent automatically with the PPOLL function)
GET Group Execute CMD 8 or CMD 136
Trigger
GTL Go To Local CMD 1 or CMD 129
IFC Interface Clear Not possible with SEND. An ABORT statement must be
used.
LAG Listen Address LISTEN 0 thru LISTEN 31; or
Group CMD 32 thru CMD 63
LLO Local Lockout CMD 17
MLA My Listen Address |MLA
MTA My Talk Address MTA
PPC Parallel Poll Config- | CMD 5 or CMD 133
ure
PPD Parallel Poll Disable | PPC (CMD 5 or CMD 133), followed by CMD 112; or
CMD 240; or
SEC 16.
PPE Parallel Poll Enable | PPC (CMD 5 or CMD 133), followed by CMD 96 thru
CMD 111; or
CMD 224 thru CMD 239; or
SEC 0 thru SEC 15 (SEC 0 allows a mask to be specified
by a numeric value)
PPU Parallel Poll Uncon- { CMD 21 or CMD 149
figure
PPOLL Parallel Poll Not possible with SEND. PPOLL function must be used.
REN Remote Enable Not possible with SEND. REMOTE statement must be
used.
SDC Selected Device CMD 4 or CMD 132

Clear

Keyword Dictionary 635

Mnemonic

Description

Secondary Keyword and Value

SPD
SPE
TAD

TCT
UNL

UNT

Serial Poll Disable
Serial Poll Enable
Talk Address

Take Control

Unlisten

Untalk

CMD 25 or CMD 153
CMD 24 or CMD 152

TALK 0 thru TALK 31, or
CMD 64 thru CMD 95, or
CMD 192 thru CMD 223.

CMD 9 or CMD 137

UNL, or LISTEN 31, or
CMD 63, or
CMD 191.

UNT, or TALK 31, or
CMD 95, or
CMD 223.

636 Keyword Dictionary

SEPARATE ALPHA FROM GRAPHICS

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement is used to simulate the separate alpha and graphics rasters of Series 200
displays (not valid in a windowing environment, such as X Windows).

(SEPARATE ALPHA j‘ >
\-‘ FROM GRAPHICS }J

Example Statements
SEPARATE ALPHA

IF (S_300 AND Multi_plane) THEN SEPARATE ALPHA FROM GRAPHICS

Semantics
This statement is used to set up the planes on multi-plane bit-mapped alpha displays for
independent use as separate alpha and graphics rasters. (This is the way that Series 200
displays work.) If the display is a monochrome, bit-mapped alpha display, an error will
be reported.
The statement performs the following actions:

1. PLOTTER IS CRT,”INTERNAL” is executed.

2. If the display is bit-mapped alpha with more than one plane (not monochrome),
then the following actions are taken:

a. The screen is cleared.
b. The alpha mask is set (see table below for details).
The alpha pen is set (see table below for details).

a o

All appropriate color map entries are initialized (see table below for details).

e. The graphics mask is set so that it does not overlap with the alpha mask (the
complement of the alpha mask).

f. The alpha display is re-written in the new alpha color.

Keyword Dictionary 637

Dispiay-Specific Parameters

Here are the values of parameters for the different types of Series 300 bit-mapped alpha

Color Map

Graphics Mask

Pens O thru 7 have
normal default values;
pens 8 thru 15 are green.

Planes 1 thru 3

(0111 base 2)

Graphics pens are
0 thru 7.

Pens 0 thru 15 have
normal default values;
pens 16 thru 31 are green;
pens 32 thru 47 are brown;

pens 48 thru 63 are cyan.

Planes 1 thru 4

(001111 base 2)

Graphics pens are
0 thru 15.

displays:
Number of
Planes Alpha Mask
4 Plane 4
{1000 base 2)
Alpha pen is 8.
6 Planes 5 & 6
(110000 base 2)
Alpha pens are
16, 32, and 48.
8 Planes 7 & 8
(11000000 base 2)
Alpha pens are
64, 128, and 192.

Pens 0 thru 63 have

normal default values;
pens 64 thru 127 are green;
pens 128 thru 191 are brown;
pens 192 thru 255 are cyan.

Planes 1 thru 6

(00111111 base 2)

Graphics pens are
0 thru 63.

Color map entries below the lowest alpha pen value have their default colors set by
PLOTTER IS CRT,"INTERNAL". Using a value in this range as an alpha pen will produce
transparent text (i.e., is equivalent to using pen 0). Setting up the color map as given
in the table causes the alpha text to be dominant over graphics images. If the COLOR
MAP option is used with PLOTTER IS, the SET PEN statement can still be used to
set all color map entries, not just those dedicated to graphics pens.

638 Keyword Dictionary

Here is a BASIC program that performs similar configuration of the planes of a 4-plane

display:

100 PLOTTER IS CRT, "INTERNAL";COLOR MAP !
110 FOR I=8 TO 15

120 SET PEN I INTENSITY 0,1,0
130 NEXT I

140 ALPHA PEN O

150 ALPHA MASK 15

160 CLEAR SCREEN

170 ALPHA MASK 8

180 ALPHA PEN 8

190 INTEGER Gm(0)

200 Gm(0)=7

210 GESCAPE CRT,7,Gm(*)

220 ALPHA ON

230 GRAPHICS ON

240 PLOTTER IS CRT,"INTERNAL"
260 END

Select Series 300 display.
Set alpha colors (green).

Set alpha pen to black (temp.).
Enable all planes (temp.).

Enable plane 4 for alpha.
Set alpha pen.

Declare array for GESCAPE.
Set bits 2,1,0, which select
graphics planes 3,2,1.
Display alpha plane.

Display graphics planes.
Return to non-color-map
mode.

Note that when using this operation with AREA COLOR and AREA INTENSITY, there
may be unexpected results. The algorithm that AREA COLOR and AREA INTENSITY
use to select graphics pens does not account for the graphics write-enable or display-
enable masks. If the pens selected by these statements have bits outside of the write-
enable mask, then the planes corresponding to these bits will not be affected. The result
is that the area fill colors will not be what is expected.

BASIC/UX Specifics

Does not work in a windowed environment.

Keyword Dictionary 639

SET ALPHA MASK

Supported On WS, UX
Option Required CRTX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement is used to specify which plane(s) can be modified by alpha display
operations.

@ET ALPHA MASKH frame buffer mask }-—-I

Item | Description/Default Range Restrictions
frame buffer numeric expression, rounded to an integer |1 thru 2'n — 1
mask where n equals the

number of display planes

Example Statements

SET ALPHA MASK Frame_mask

SET ALPHA MASK 3

SET ALPHA MASK IVAL("1100",2)

IF Total_frames = 5 THEN SET ALPHA MASK 8

640 Keyword Dictionary

Semantics

This statement does not affect the operation of monochrome displays or the display of
the Model 236C.

Setting bit 0 of the frame buffer mask (i.e. SET ALPHA MASK 1) enables alpha write
permission to plane 1; setting bits 2 and 3 of the frame buffer mask (i.e. SET ALPHA
MASK 12) enables write permission to planes 3 and 4. The masks you can use to enable
write permissions range from 1 thru 2°n — 1 where n is the number of display planes
(e.g. the range of frame buffer masks for 4-planes would be 1 thru 15).

This statement affects any alpha display operation using the CRT (e.g. PRINT, DISP, CAT,
error messages, etc.).

The difference between this statement and SET DISPLAY MASK is SET ALPHA MASK
specifies which plane(s) can be modified by alpha operations (regardless of whether or
not it/they are displayed). SET DISPLAY MASK specifies the plane(s) that are to be
displayed (regardless of whether or not anything has been or can be written to it/them).

For further information on the alpha write-enable mask, read the section entitled “The
Alpha Mask” in the chapter “Using Graphics Effectively” found in the BASIC Graphics
Techniques manual.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 18.

For more information related to this statement, see SEPARATE ALPHA and MERGE
ALPHA which are found in this reference.

Keyword Dictionary 641

SET CHR

Supported On
Option Required
Keyboard Executable
Programmable

In an IF.. THEN

WS, UX
CRTX

Yes
Yes
Yes

This statement re-defines the bit-pattern used for character(s) in the current font (on

bit-mapped alpha/graphics displays only).

f t bit-pattern
E -~~~ (oD

Item I Description I Range

first character numeric expression, rounded to an integer, | 0 thru 256
which specifies the numeric code of the first
character to be re-defined

bit-pattern array |name of an INTEGER array any valid name

Example Statements

ALLOCATE INTEGER Char_cell(1:CHRY,1:CHRX)
SET CHR Char_code,Char_cell(x)

ALLOCATE INTEGER Entire_font (1:Num_chars,1:CHRY,1:CHRX)
SET CHR O,Entire_font (*)

642 Keyword Dictionary

Semantics

If the alpha display is not bit-mapped (that is, if the alpha is separate from the graphics
raster, and is generated by character-generator-ROM hardware), then attempting to
execute this statement results in error 880.

The “first character” parameter specifies the code of the first character whose bit-pattern
is to be re-defined.

The “bit-pattern array” contains the actual pixels that are to comprise the new character.
If the display is monochrome (single-plane), then only the low-order bit of each INTEGER
element is used. If the display is color (multi-plane), then as many bits are used as there
are planes in the display.

If the bit-pattern array parameter has only two dimensions, then only one character is
re-defined. The first dimension must have a range of exactly the value of CHRY for
this display; the second must have a range of CHRX. (Character cells are 16 rows by 8
columns for high-resolution bit-mapped alpha displays, and 15 rows by 12 columns for
medium-resolution bit-mapped alpha displays.)

If the bit-pattern array parameter has three dimensions, then multiple characters are
re-defined beginning at the character specified by the “first character” parameter, and
continuing until the array is exhausted (or character code 256 is reached, whichever
occurs first). The first dimension of this array corresponds to the character’s code, the
second to the character-cell row, and the third to the character-cell column.

Note that character code 256 is the pattern which is exclusive OR’d with a character
to produce underlined characters on the display. [Underlining is enabled by writing a

CHR$(132) on the display, such as with PRINT, OUTPUT, or DISP.]

Restoring the Power-Up Default Font
If you want to return to using the default font, then execute this statement:

CONTROL CRT,21;1

Keyword Dictionary 643

SET DISPLAY MASK

Supported On WS,UX
Option Required CRTX

Keyboard Executable
Programmable
In an IF...THEN

This statement is used to specify which plane(s) can be seen on the alpha display.

(SET DISPLAY MASK }—{ frame butfer mask ||

Item | Description/Default Range Restrictions
frame buffer numeric expression, rounded to an integer |0 thru 2'n — 1
mask where n equals the

number of display planes

Example Statements

SET DISPLAY MASK Frame_mask

SET DISPLAY MASK 3

SET DISPLAY MASK IVAL("1100",2)

IF Disp_frames = 5 THEN SET DISPLAY MASK 8

644 Keyword Dictionary

Semantics

This statement does not affect the operation of monochrome displays or the display of
the Model 236C.

Setting bit 0 of the frame buffer mask (i.e. SET DISPLAY MASK 1) enables the
displaying of alpha plane 1; setting bits 2 and 3 of the frame buffer mask (i.e. SET
DISPLAY MASK 12) enables displaying of alpha planes 3 and 4. The masks you can
use to enable display range from 0 thru 2°n — 1 where n is the number of display planes
(e.g. the range of frame buffer masks for 4-planes would be 0 thru 15).

This statement affects any display operation using the CRT (e.g. PRINT, DISP, CAT, error
messages, graphics, etc.).

The difference between this statement and SET ALPHA MASK is SET DISPLAY MASK
specifies the plane(s) that are to be displayed (regardless of whether or not anything has
been or can be written to it/them). SET ALPHA MASK specifies which plane(s) can be
modified by alpha operations (regardless of whether or not it/they are displayed).

For further information on the display-enable mask, read the section entitled “The

Alpha Mask” in the chapter “Using Graphics Effectively” found in the BASIC Graphics
Techniques manual.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 20.

For more information related to this statement, see ALPHA ON/OFF, GRAPHICS
ON/OFF, and GESCAPE found in this reference.

Keyword Dictionary 645

SET ECHO

Supported On WS, UX
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement sets an echo to the specified location on the current PLOTTER IS device.

GEED S e MO

Item | Description | Range
x coordinate numneric expression in current units —
y coordinate numeric expression in current units —

Example Statements

SET ECHO Xin,Yin
SET ECHO 1000, 10000

Semantics

If the current PLOTTER IS device is a CRT, a 9-by-9-dot cross-hair is displayed at
the specified coordinates if they are within the hard clip limits; the soft clip limits are
ignored. No echo is displayed if the coordinates are outside the hard clip limits.

If the current PLOTTER IS device is an HPGL plotter, the pen is raised and moved to
the specified coordinates if they are within the current clip limits. If the pen is inside
the clip limits and the new echo position is not, it moves towards the new echo position
but stops at the clip boundary. If the pen is outside the clip limits and the new echo
position is outside the clip limits, the pen moves along the nearest clip boundary.

SET ECHO is frequently used with the READ LOCATOR statement.

646 Keyword Dictionary

SET HIL MASK

Supported On UXx
Option Required n/a
Keyboard Executable Yes
Programmable Yes
In an IF. .. THEN Yes

This statement enables the specified HIL devices for use by the BASIC system.

SET HIL MASK address mask

Item I Description I Range

address mask the sum of 2 raised to the power of each of

the addresses of the desired devices

any even number
from 0 to 254

Example Statements

SET HIL MASK 16
SET HIL MASK 2"Mouse+2"Knobboxi+2~Buttonbox2

Keyword Dictionary 647

Semantics

The address mask provides the capability of specifying the HIL devices to be used by
the BASIC system. The most recent SET HIL MASK statement specifies the HIL
devices which are used in subsequent ON KNOB, ON CDIAL, ON HIL EXT, and
GRAPHICS INPUT IS statements. In addition, it specifies the devices which generate
arrow keystrokes during live keyboard and editing when the devices are not being used
by any of the above statements.

The value of the mask is obtained by raising 2 to the power of each of the addresses of
the desired device, and adding these values. Suppose you want to create a mask which
would only allow interrupts from HP-HIL devices at addresses 1 and 3. You would take
2 and raise if to the first power and add this result to 2 raised to the third power; the
final result is a mask value of 10.

At start-up time, the BASIC system attempts to use all available devices on the HP-HIL
link. You may then use this statement to select only those devices which you require and
relinquish the other devices for use by different HP-UX processes (e.g. other BASIC/UX
processes). You should never specify the address of the HIL keyboard with this statement
since this interferes with the operation of BASIC and block all keyboard input.

Any HIL device which has been specified with this statement or which is not owned by
other processes can be identified using the HIL SEND statement as in:

HIL SEND 4; IDD
You should note that the X Windows environment monopolizes all HIL devices unless

explicitly specified not to do so. When a device is thus owned by X Windows, it is not
available for use by any BASIC processes running under the environment.

648 Keyword Dictionary

SET KEY

Supported On WS, UX
Option Required KBD
Keyboard Executable Yes
Programmable Yes
In an IF.. THEN Yes

This statement programmatically re-defines typing-aid softkey(s).

) l key string containing 1
CSET KEY number typing-aid definition e
string array of (*)
softkey definition (s)

Item Description Range
key number numeric expression, rounded to an integer |0 thru 23
string containing 1 |string expression any valid string expression

softkey definition

string array of soft- | name of a string array any valid name
key definition(s)

Example Statements

SET KEY 1,0neKey$
SET KEY First_key,Several_keys$ (*)

Keyword Dictionary 649

Semantics

Typing-aid softkeys are used when typing text at the keyboard. They are active whenever
there is not a running program that has defined interrupt service routines for the keys
(with ON KEY).

The “first key” parameter indicates the first key to be re-defined.

The second parameter (the string expression or array) determines the number of keys to
be re-defined:

e If the parameter is a siring expression (which includes a simple string variable),
then only one typing-aid softkey is re-defined.

o [f the parameter is a string array, then several typing-aid softkeys may be re-defined.
Softkeys are re-defined in ascending order, one for each array element, until one of
the following conditions is true:

e the end of the array is reached
e the last softkey is re-defined
e typing-aid softkey memory overflows

For instance, if this parameter has a value of 5, and the string array has 3 elements,
then softkeys (15]. (¥6], and are re-defined. respectively.

In order to minimize the chances of typing-aid memory overflows, keys in the range to
be re-defined are first cleared and then the corresponding string values are placed into
typing-aid memory. For instance, if the “first key” parameter is 3 and the array contains
4 elements, then softkeys 3 through 6 are cleared, after which the string array elements
are placed into the corresponding softkeys. If typing-aid memory does overflow, the
remaining keys in the range remain undefined. For instance, in this example if a memory
overflow occurred while defining key 5, then keys 3 and 4 would have new definitions
while keys 5 and 6 would remain undefined.

If the string, or string array element, contains a null (0 length), string, the corresponding

typing-aid becomes undefined. Use EDIT KEY or LOAD KEY to define null string
typing-aids.

650 Keyword Dictionary

SET LOCATOR

Supported On WS, UX
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement specifies a new position for the locator of the current graphics input
device.

(ser LOCATMcaorujn

Item Description Range
x coordinate numeric expression specifying the x coordi- | range of REAL
nate of the locator’s new position in current
units
y coordinate numeric expression specifying the y coordi- | range of REAL
nate of the locator’s new position in current
units

Example Statements

SET LOCATOR 12,95
SET LOCATOR X_cor,Y_cor

Semantics

If any of the coordinates are outside the device’s limits, they are truncated to the nearest
boundary.

In order to change the X and Y coordinates of the locator, the graphics input device

must have a programmable locator position, (e.g. graphics input is from the keyboard
and other relative locators).

Keyword Dictionary 651

SET PEN

Supported On WS, UX
Option Required GRAPHX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement defines the color for one or more entries in the color map.

CIED o Pt N G SR R RO O -~

HSL array
name

eIy)] o0
RGBnaa”r‘*er‘ay ((%)))

Item Description Range
pen selector numeric expression, rounded to an integer |0 thru 32767
hue numeric expression 0 thru 1
~ saturation numeric expression 0 thru 1

luminosity numeric expression 0 thru 1

HSL array name |name of a two-dimensional, three-column any valid name
REAL array

red numeric expression 0 thru 1

green numeric expression 0 thru 1

blue numeric expression 0 thru 1

RGB array name |name of a two-dimensional, three-column any valid name
REAL array

Example Statements

SET PEN 3 COLOR Hue,Saturation,Luminosity
SET PEN Pen_number INTENSITY Color_map_array(*)
SET PEN O INTENSITY 4/15,4/15,4/15

652 Keyword Dictionary

Semantics

This statement defines the color for one or more entries in the color map. Either the
HSL (hue/saturation/luminosity) color model or the RGB (red/green/blue) color model
may be used. This statement is ignored for non-color mapped devices and color mapped
devices in non-color map mode.

For both SET PEN COLOR. and SET PEN INTENSITY, the pen selector specifies the
first color map entry to be defined. If individual RGB or HSL values are given, that
entry in the color map is the only one defined. If an array is specified, the color map is
redefined, starting at the specified pen, and continuing until either the highest-numbered
entry in the color map is redefined or the source array is exhausted.

Specifying color with the SET PEN and AREA PEN statements (resulting in non-
dithered color) results in a much more accurate representation of the desired color than
specifying the color with an AREA statement. Compare the five color plates shown in
this entry with the corresponding plates in the AREA statement.

Note

The following color plates do not exactly represent what your eye
would see on the CRT. The reason for this is that photographic film
cannot capture all the colors a CRT can produce, and the printing
process cannot reproduce all the colors that film can capture. The
five following color plates are multiple exposures.

Keyword Dictionary 653

SET PEN COLOR

The hue value specifies the color. The hue ranges from zero to one, in a circular manner,
with a value of zero resulting in the same hue as a value of one. The hue, as it goes from
zero to one, proceeds through red, orange, yellow, green, cyan, blue, magenta, and back
to red.

The saturation value, classically defined, is the inverse of the amount of white added to
a hue. What this means is that saturation specifies the amount of hue to be mixed with
white. As saturation goes from zero to one, there is 0% to 100% of pure hue added to
white. Thus, a saturation of zero results in a gray, dependent only upon the luminosity;
hue makes no difference.

The luminosity value specifies the brightness per unit area of the color. A luminosity
of zero results in black, regardless of hue or saturation; if there is no color, it makes no
difference which color it is that is not there.

The first color plate on the following page shows the changes brought about by varying
one HSL parameter at a time. The bottom bar shows that when saturation (the amount
of color) is zero, hue makes no difference, and varying luminosity results in a gray scale.

- The second color wheel on the following page represents the fully saturated, fully
luminous colors selected as the hue value goes from 0 through 1. Any value between
zero and one, inclusive, can be chosen to select color, but the resolution (the amount the
value can change before the color on the screen changes) depends on the value of hue, as
well as the other two parameters.

654 Keyword Dictionary

Hue/Saturation/Luminosity

Individual Effects on Final Color

a Hue

[o i

Saturation
)

Hue=1
Sat=0->1
fum=1

Ltuminosity

L " 1

Hue=1{
Sat=1
Lum=0->1

Luminosity (Gray Scale)

Hue=7
Sat=0
Lum=8->1

B/6 or B/6
Red

5.6 ' i RV
Magenta -) s .~ Yellauw
" N
~ -

o

276
Green

HSL Color Wheel
Keyword Dictionary

The next color plate shows the effect that varying saturation and luminosity has on hue.
Each of the small color wheels is a miniature version of the large one above, except it
has fewer colors.

Effects of Saturation and Luminosity on Color

SET PEN INTENSITY
The red, green, and blue values specify the intensities of the red, green, and blue colors
displayed on the screen.

The first color plate demonstrates the effect of varying the intensity of one color
component while the other two remain constant.

The second plate on the following page shows combinations of red, green and blue.
The values are represented in fifteenths: 0 fifteenths, 5 fifteenths, 10 fifteenths, and 15
fifteenths—every fifth value. Fifteenths are the units. Thus, zero fifteenths through
fifteen fifteenths made a total of sixteen levels. the values for each color component are
represented in that color.

656 Keyword Dictionary

Red=@-y |
Greqan=B, Blue=l

Rog=0-> 1
Grean=), Blus=@

Reci=@-> |
Green=), Blue=~l

Red=0, Blua=}
Green=B->1

Red=]1, Hlue=B
Grosn=8-11

Red=1, Blue~]
Green=f->1

Red—8, Green=L
Blue=@->{

Red~1, Grasn=B
Blua=p—> 1

Rad=1, Green=|
Bluesg-> |

RGB Addition: One Color at a Time

RGB Color Addition Charts

Keyword Dictionary 657

BASIC/UX Specifics
Dithering on the HP 2397 terminal assumes that the hardware color map contains power-
on color assignments. However, these do not correspond to the standard BASIC color

map. To make dithering results accurate on the HP 2397, the color map must be set to
the following with SET PEN:

Pen R G B
0 0.0 0.0 0.0
1 1.0 0.0 0.0
2 0.0 1.0 0.0
3 1.0 1.0 0.0
4 0.0 0.0 1.0
5 1.0 0.0 1.0
6 0.0 1.0 1.0
7 1.0 1.0 1.0

658 Keyword Dictionary

SET TIME

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an TF. . THEN Yes

This statement resets the time-of-day given by the real-time clock.

SET TIME W

Item l Description | Range
0 thru 86 399.99

numeric expression, rounded to the nearest
hundredth

seconds

Example Statements

SET TIME 0
SET TIME Hours+*3600+Minutes*60

SET TIME TIME("8:37:30")

SET TIME (BASIC/UX only)

Semantics

SET TIME changes only the time within the current day, not the date. The new clock
setting is equivalent to (TIMEDATE DIV 86 400)x86 400 plus the specified setting.

BASIC/UX Specifics
This statement does not reset the HP-UX clock, even if the user is super-user. Instead
it resets the clock which BASIC/UX keeps for itself.

SET TIME without a parameter resynchronizes the time with the HP-UX clock. This
does not affect the date nor the timezone. If the timezone is subsequently resynchronized
with HP-UX (via TIMEZONE IS), then the time will change accordingly. The proper
way to resynchronize both the time and timezone is to do the timezone first as in:

TIMEZONE IS
SET TIME

Keyword Dictionary 659

SET TIMEDATE

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement resets the absolute seconds (time and day) given by the real-time clock.

SET TIMEDATE W

Item | Description

I Range

seconds

hundredth

Example Statements

SET TIMEDATE TIMEDATE+3600

SET TIMEDATE Strange_number

SET TIMEDATE DATE("1 Jan 1989") + TIME("13:57:20")
SET TIMEDATE (BASIC/UX only)

660 Keyword Dictionary

numeric expression, rounded to the nearest

2.086629 12 E+11 thru
2.1432522239999 E+11

Semantics

The volatile clock is set to 2.086629 12E+11 (midnight March 1, 1900) at power-on
(BASIC Workstation semantics). If there is a battery-backed (non-volatile) clock, then
the volatile clock is synchronized with it at power-up. If the computer is on an SRM
system (and has no battery-backed clock), then the volatile clock is synchronized with the
SRM clock when the SRM and DCOMM binaries are loaded. The clock values represent
Julian time, expressed in seconds.

BASIC/UX Specifics
The volatile clock is set to the current HP-UX time at power-on. The clock values
represent Julian time, expressed in seconds.

Note that this statement does NOT reset the HP-UX clock, even if the user is super-user.
Instead it resets the clock which BASIC keeps for itself.

SET TIMEDATE without a parameter resynchronizes the time and date with the HP-UX
clock. This does not affect the timezone. If the timezone is subsequently resynchronized
with HP-UX (via TIMEZONE IS), then the time and date will change accordingly. The
proper way to resynchronize the time, date, and timezone is to do the timezone first as
in:

TIMEZONE IS
SET TIMEDATE

Keyword Dictionary 661

SGN

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns 1 if the argument is positive, 0 if it equals zero, and —1 if it is
negative.

numeric
expression

Example Statements

Root=SGN (X) *SQR (ABS (X))
Z=2xPI*SGN(Y)

Semantics
COMPLEX arguments are not allowed with this function.

662 Keyword Dictionary

SHIFT

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns an integer which equals the value obtained by shifting the 16-bit
binary representation of the argument by the number of bit positions specified, without
wrap-around.

bit position
HRO O EE=EASO

Item I Description l Range
argument numeric expression, rounded to an integer | —32 768 thru +32 767
bit position numeric expression, rounded to an integer | —15 thru +15
displacement

Example Statements

New_word=SHIFT(01d_word, -2)
Mask=SHIFT(1,Position)

Semantics

If the bit position displacement is positive, the shift is towards the least-significant bit.
If the bit position displacement is negative, the shift is towards the most-significant bit.
Bits shifted out are lost. Bits shifted in are zeros. The SHIFT operation is performed
without changing the value of any variable in the argument.

Keyword Dictionary 663

SHOW

Supported On WS, UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement is used to define an isotropic current unit-of-measure for graphics
operations.

GO OO]

Item Description Range
left numeric expression —
right numeric expression # left
bottom numeric expression —
top numeric expression # bottom

Example Statements

SHOW -5,5,0,100
SHOW Left,Right,Bottom, Top

Semantics

SHOW defines the values which must be displayed within the hard clip boundaries, or
the boundaries defined by the VIEWPORT statement. SHOW creates isotropic units
(units the same in X and Y). The direction of an axis may be reversed by specifying the
left greater than the right or the bottom greater than the top. (Also see WINDOW.)

664 Keyword Dictionary

SIGNAL

Supported On WS, UX
Option Required 10
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This statement generates a software interrupt.

(stenaL)+ so1dneer

Item Description Range

signal selector numeric expression, rounded to an integer |0 thru 15

Example Statements

SIGNAL 3
SIGNAL Bailout

Semantics

If an ON SIGNAL statement for the specified signal selector exists, and all the other
conditions for an event-initiated branch are fulfilled, the branch defined in the ON
SIGNAL statement is taken. If no ON SIGNAL exists for the specified signal selector,
the SIGNAL statement causes no action.

Keyword Dictionary 665

SIN

Supported On WS, UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the sine of the angle represented by the argument.

DO

Range
Item Description Restrictions
argument numeric expression in current units of angle | absolute values less than:
when arguments are INTEGER or REAL 1.708 312 781 2 E+10 deg.

or
2.981 568 26 E+8 rad.;
see “Range Restriction
Specifics” for COMPLEX

arguments

numeric expression in radians when argu-
ment is COMPLEX

Examples Statements

Sine=SIN(Angle)
PRINT "Sine of ";Theta;"=";SIN(Theta)

666 Keyword Dictionary

Semantics

If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

To compute the SIN of a COMPLEX value, the COMPLEX binary must be loaded.

Range Restriction Specifics
The formula used for computing the SIN of a COMPLEX argument is:

CMPLX (SIN(Real_part)*COSH(Imag_part) ,COS (Real_part)*SINH(Imag_part))
where Real_part is the real part the COMPLEX argument and Imag_part is the imaginary
part of the COMPLEX argument. Some values of a COMPLEX argument may cause
errors in this computation. For example,

SIN(CMPLX (O,MAXREAL))
will cause error 22 due to the COSH(Imag_part) calculation.
Note that any COMPLEX function whose definition includes a sine or cosine function

will be evaluated in the radian mode regardless of the current angle mode (i.e. RAD or
DEG).

Keyword Dictionary 667

SINH

Supported On WS, UX
Option Required COMPLEX
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the hyperbolic sine of a numeric expression.

EDNOSEE=t0

Range
Item Description/Default Restrictions
argument numeric expression —T710 through 710 for INTE-

GER or REAL arguments; see
“Range Restriction Specifics”
for COMPLEX arguments

Example Statements

Result=SINH(-8.2475)
PRINT "Hyperbolic Sine = ";SINH(Expression)

Semantics

If an INTEGER or REAL argument is given, this function returns a REAL value. If a
COMPLEX argument is given, this function returns a COMPLEX value.

Range Restriction Specifics
The formula used for computing SINH is as follows:

(EXP (Argument) - EXP(-Argument))/2

where Argument is the argument of the SINH function. Some arguments may cause errors
in intermediate values computed during this computation. For example,

SINH(MAXREAL)

will cause error 22 due to the EXP(Argument) computation.

668 Keyword Dictionary

SIZE

Supported On WS, UX
Option Required MAT
Keyboard Executable Yes
Programmable Yes
In an IF...THEN Yes

This function returns the size (number of elements) of a dimension of an array. This
INTEGER value represents the difference between the upper bound and the lower bound,
plus 1.

array . .
n
@ (O~ "vame ~ (D—foinensio O

Item I Description I Range
array name name of an array any valid name
dimension numeric expression, rounded to an integer |1 thru 6;

< the RANK of the array
Example Statements

Upperbound (2)=BASE(A,2)+SIZE(A,2)-1
Number_words=SIZE(Words$,1)

SORT

See the MAT SORT statement.

Keyword Dictionary 669

SOUND

This statement produces a single tone or multiple tones on the sound generator of an
HP-HIL interface.

array of sound

Supported On
Option Required

Keyboard Executable
Programmable
In an IF...THEN

O~ O O~feo]

instructions (%) /

Item

Description

Range

voice number

frequency

volume
duration

array of sound
instructions

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer
numeric expression, rounded to an integer

INTEGER array

Example Statements

SOUND Voice_num,Freq,Volume,Duration
SOUND 1,440,12,0.50
SOUND Instructions(x)

Semantics

If the multiple-parameter syntax is used, then the SOUND statement generates one tone
on the specified voice number; the frequency, volume, and duration of the tone are as
specified by the last three parameters of the statement. Note that the BASIC system does
not wait for the tone to finish before executing the following program line or statement
(if any). If you want to generate a sequence of tones, you must either generate a delay
between SOUND statements (such as with WAIT), or use the SOUND syntax described

below.

670 Keyword Dictionary

1 thru 3

83 thru 83 333 Hz
(see following table)

0 thru 15
0, 0.01 thru 2.55

must contain the proper
number of non-zero
values (see Semantics)

WS, UX
KBD

If the single-parameter syntax is used (that is, a numeric array is specified), then the
elements of the array are read sequentially and interpreted according to the following
rules:

Instruction Sound Chip Effect Produced
0 Exit the SOUND statement (and stop reading array elements)
1to3 The specified voice is to be used; also says to read the nezt three array elements,

and interpret them as follows, respectively:

e tone number—used to set the frequency
(frequency = 83 333 / tone number).

e volume—0 = off; 1 thru 15 are lowest to highest volﬁme.
e duration—values 0 thru 255 are interpreted as follows:
0 is interpreted as “sound indefinitely”.

1 thru 255 are interpreted as 10’s of milliseconds
(i.e., 1/100 second);

