
BASIC Language Reference

Volume 2: O-Z

HP 9000 Series 200/300 Computers

HP Part Number 98613-90052

Flin- HEWLETT
a!~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice

HEWLETI-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performanCl •
or use of this material

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Copyright © Hewlett-Packard Company 1987,1988,1989

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Copyright © AT&T, Inc. 1980,1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software Distributton under license from the Regents of the UniverSity
of California.

ii

Printing History
New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

January 1987 ... Edition 1

November 1987 ... Edition 2. This edition reflects the 5.0 corrections and 5.1 additions.

May 1988 ... Update. This edition contains new information regarding t~5.11 revision.
(See SYSTEM$, and STATUS/CONTROL register for cache memory at select code
32.)

August 1988 ... Edition 3. This edition contains new information regarding the BASIC/UX
5.5. There are no changes to the BASIC Workstation pages, and the previous
update has been merged.

Printing History iii

iv Printing History

Table of Contents

Volume 1

U sing the Keyword Dictionary
Legal Usage Table .. 1
Syntax Drawings Explained 3
Keywords and Spaces. .. 4

Space Between Keywords and Names , .. 4
No Spaces in Keywords or Reserved Groupings 4
U sing Keyword Letters for a Name .. 4

Keyboards ... 5

Keyword Dictionary A-N .. 7

Volume 2
Keyword Dictionary O-Z ... :. 417

Appendix A: Language History : A-I

Appendix B: Glossary ... B-1

Appendix C: Interface Registers
I/O Path Registers .. C-l

Registers for All I/O Paths ... C-l
I/O Path Names Assigned to a Device C-l
I/O Path Names Assigned to an ASCII File C-2
I/O Path Names Assigned to a BDAT File C-2
I/O Path Names Assigned to an HP-UX File C-3
I/O Path Names Assigned to a Buffer C-3

Summary of CRT STATUS and CONTROL Registers C-5
Summary of Keyboard Status and Control Registers C-ll
Summary of HP-IB Status and Control Registers C-17
Summary of RS-232C Serial STATUS and CONTROL Registers C-23
Overview of Datacomm Status and Control Registers. C-32
Summary of Datacomm Interface Status and Control Registers C-34
Summary of Powerfail Status and Control Registers . C-48
Summary of GPIO STATUS and CONTROL Registers C-51

Table of Contents v

GPIO Registers .. C-52
Summary of BCD Status and Control Registers. C-54
Summary of EPROM Programmer STATUS and CONTROL Registers C-58
Parity, Cache, Float, and Clock STATUS and CONTROL Register

(Pseudo Select Code 32) .. C-60
SRM Interface STATUS Registers C-62
EXT Signal Registers ... C-63

Appendix D: Useful Tables
Option Numbers .. D-l
Interface Select Codes .. " D-2
Display-Enhancement Characters. .. D-3

Monochrome Enhancements .. D-3
Color Enhancements ... D-3

U.S. ASCII Character Codes. .. D-4
U .S./European Display Characters. .. D-6
Katakana Display Characters. .. D-12
Master Reset Table ... D-16
Graphic Reset Table .. D-19
Interface Reset Table. .. D-20
Second By:te of Non-ASCII Key Sequen.ces (String) .. D-22
Selected High-Precision Metric Conversion Factors. .. D-27

Appendix E: Error Messages .. E-l

Appendix F: Keyword Summary
Booting the System .. F-l
Program Entry/Editing. .. F-l
Program Debugging and Error Handling , F-2
Memory Allocation and Management .. F-3
Comparison Operators. .. F-3
General Math .. F-4
Complex Math ... F-5
Binary Functions ... F-5
Trigonometric Operations. .. F-6
Hyperbolic Operations. .. F-6
String Operations. .. F-6
Logical Operators .. , F-7
Mass Storage .. F-7
Program Control. .. F-9
Event-Initiated Branching ... F-I0
HP-HIL Device Support .. F-13

vi Table of Contents

Graphics Control .. F-13
Graphics Plotting .. F-15
Graphic Axes and Labeling ... F-15
HP-IB Control ... F-16
Clock and Calendar .. " F-16
General Device Input/Output ... F-17
Display and Keyboard Control. .. F -18
Array Operations .. F -20
Vocabulary .. F-21

Table of Contents vii

viii Table of Contents

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

No
Yes
Yes

OFF CDIAL

This statement disables any ON CDIAL branching currently set up.

(OFF CDIAL ~

Example Statements
100 OFF COIAL
200 IF Done THEN OFF COIAL

Keyword Dictionary 417

OFF CYCLE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CLOCK

No
Yes
Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON CYCLE statement. .

(OFF CYCLE ~

Example Statements
OFF CYCLE
IF Kick_stand THEN OFF CYCLE

Semantics
OFF CYCLE destroys the log of any CYCLE event which has already occurred but
which has not been serviced.

If OFF CYCLE is executed in a subprogram such that it cancels an ON CYCLE in
the calling context, the ON CYCLE definition is restored upon returning to the calling
context.

BASIC/UX Specifics
Resolution is 20 miliseconds. A new child process of BASIC/UX is started for the timer.

418 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CLOCK

No
Yes
YeR

OFF DELAY

This statement cancels event-initiated branches previously defined and enabled by an
ON DELAY statement.

(OFF DELAY ~

Example Statements
OFF DELAY
IF Ready THEN OFF DELAY

Semantics
OFF DELAY destroys the log of any DELAY event which has already occurred but which
has not been serviced.

If OFF DELAY is executed in a subprogram such that it cancels an ON DELAY in
the calling context, the ON DELAY definition is restored upon returning to the calling
context.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASIC/UX is started for the timer.

Keyword Dictionary 419

OFF END
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
None

No
Yes
Yes

This statement cancels event-initiated branches previously enabled and defined by an
ON END statement.

Item Description

I/O path name name assigned to a mass storage file

Example Statements
OFF END ~File
IF Special THEN OFF END ~Source

Semantics

Range

any valid name (see ASSIGN)

If OFF END is executed in a subprogram and cancels an ON END in the context which
called the subprogram, the ON END definitions are restored when the calling context is
restored.

If there is no ON END definition in a context, end-of-file and end-of-record are reported
as errors.

420 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
TRANS

No
Yes
Yes

OFF EOR

This statement cancels event-initiated branches previously defined and enabled by an
ON EOR statement.

Item Description Range

I/O path name name assigned to a device, a group of de- any valid name
vices, or a mass storage file

Example Statements
OFF EaR ClFile
OFF EaR ClDevice_selector

Semantics
The I/O path may be assigned either to a device, a group of devices, or to a mass storage
file or pipe; however, if the I/O path is assigned to a BUFFER, an error is reported when
the OFF EOR statement is executed.

OFF EOR destroys the log of any EOR event which has already occurred but which has
not been serviced.

If OFF EOR is executed in a subprogram such that it cancels an ON EOR in the calling
context, the ON EOR definition is restored upon returning to the calling context.

Keyword Dictionary 421

OFF EOT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
TRANS

No
Yes
Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON EOT statement.

Item Description Range

I/O path name name assigned to a device, a group of de- any valid name
vices, or a mass storage file

Example Statements
OFF EOT <OFile
IF Done_flag THEN OFF EOT <OInfo

Semantics
The I/O path may be assigned either to a device, a group of devices, or to a mass storage
file or pipe; however, if the I/O path is assigned to a BUFFER, an error is reported when
the OFF EOT statement is executed.

OFF EOT destroys the log of any EOT event which has already occurred but which has
not been serviced.

If OFF EOT is executed in a subprogram such that it cancels an ON EOT in the calling
context, the ON EOT definition is restored upon returning to the calling context.

422 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

OFF ERROR

This statement cancels event-initiated branches previously defined and enabled by an
ON ERROR statement. Further errors are reported to the user in the usual fashion.

(OFF ERROR ~

Keyword Dictionary 423

OFF EXT SIGNAL
Supported On UX
Option Required nl a
Keyboard Executable No
Programmable Yes
In an IF ... THEN Yes

This statement cancels event-initiated branches previously defined by an ON EXT
SIGNAL statement.

OFF EXT SIGNAL ,........,---~

Item Description

signal number numeric expression, rounded to integer

Example Statements
OFF EXT SIGNAL 4
OFF EXT SIGNAL

Semantics

Range

1 thru 32
(see ON EXT SIGNAL)

Not specifying a system signal number disables the event-initiated branches for all system
signals. Specifying a signal number causes the OFF EXT SIGNAL to apply to the event­
initiated log entry for the specified signal only.

Any pending ON EXT SIGNAL branches for the affected signals are lost and further
signals are vectored to the default handler for the EXT SIGNAL. See ON EXT SIGNAL
for a description of the default actions for each EXT SIGNAL.

The action to be taken for an EXT SIGNAL is inherited when entering a new context
(subprogram). This action stays in effect until an ON EXT SIGNAL or OFF EXT
SIGNAL is executed. When an OFF EXT SIGNAL is executed within a context, the
action for that external signal reverts to its default action. When the context is exited,
the current action reverts to what it was in the calling context.

424 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

No
Yes
Yes

OFF HIL EXT

This statement disables an end-of-line interrupt previously enabled by an ON HIL EXT
statement. When this statement is executed, any pending ON HIL EXT branch is
cancelled.

(OFF HIL EXT~

Example Statement
OFF HIL EXT
IF NOT Hil_active THEN OFF HIL EXT

Keyword Dictionary 425

OFFINTR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10
No

Yes
Yes

This statement cancels event-initiated branches previously defined by an ON INTR
statement.

Item Description Range

interface select
code

numeric expression, rounded to an integer; 5, and 7 thru 31
Default = all interfaces

Example Statements
OFF INTR
OFF INTR Hpib

Semantics
Not specifying an interface select code disables the event-initiated branches for all
interfaces. Specifying an interface select code causes the OFF INTR to apply to the
event-initiated log entry for the specified interface only.

Any pending ON INTR branches for the effected interfaces are lost and further interrupts
are ignored.

426 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

OFF KBD

This statement cancels the event-initiated branch previously defined by an ON KBD
statement.

(OFF KBD~

Example Statements
OFF KBD
IF NOT Process_keys THEN OFF KBD

Semantics
When this statement is executed, any pending ON KBD branch is cancelled, and the
keyboard buffer is cleared.

If OFF KBD is executed in a subprogram such that it cancels an ON KBD in the calling
context, the cancelled ON KBD definition is restored when the calling context is restored.
However, the keyboard buffer's contents are not restored with the calling context, because
the buffer was cleared with the OFF KBD.

Keyword Dictionary 427

OFF KEY
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON KEY statement.

Item Description Range

key selector numeric expression, rounded to an integer; 0 thru 19
Default = all keys

Example Statements
OFF KEY
OFF KEY 4

Semantics
Not specifying a softkey number disables the event-initiated branches for all softkeys.
Specifying a softkey number causes the OFF KEY to apply to the specified soft key only.
If OFF KEY is executed in a subprogram and cancels an ON KEY in the context which
called the subprogram, the ON KEY definitions are restored when the calling context is
restored.

Any pending ON KEY branches for the effected soft keys are lost. Pressing an undefined
softkey generates a beep.

428 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

OFF KNOB

This statement cancels event-initiated branches previously defined and enabled by the
ON KNOB statement. Any pending ON KNOB branches are lost. Further use of the
knob will result in normal scrolling or cursor movement.

(OFF KNOB}-f

Keyword Dictionary 429

OFF SIGNAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10
No

Yes
Yes

OFF SIGNAL cancels the ON SIGNAL definition with the same signal selector. If no
signal selector is provided, all ON SIGNAL definitions are cancelled. OFF SIGNAL only
applies to the current context.

Item Description Range

signal selector numeric expression, rounded to an integer 0 thru 15

Example Statements
OFF SIGNAL
OFF SIGNAL 15

430 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CLOCK

No
Yes
Yes

OFF TIME

This statement cancels event-initiated branches previously defined and enabled by an
ON TIME statement.

(OFF TIME)-f

Example Statements
OFF TIME
IF Attended THEN OFF TIME

Semantics
OFF TIME destroys the log of any TIME event which has already occurred but which
has not been serviced.

If OFF TIME is executed in a subprogram such that it cancels an ON TIME in the calling
context, the ON TIME definition is restored upon returning to the calling context.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASIC/UX is started for the timer.

Keyword Dictionary 431

OFF TIMEOUT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This statement cancels event-initiated branches previously defined and enabled by an
ON TIMEOUT statement.

Item Description Range

interface select
code

numeric expression, rounded to an integer; 7 thru 31
Default = all interfaces

Example Statements
OFF TIMEOUT
OFF TIMEOUT Isc

Semantics
Not specifying an interface select code disables the event-initiated branches for all
interfaces. Specifying an interface select code causes the OFF TIMEOUT to apply to
the event-initiated branches for the specified interface only. When OFF TIMEOUT is
executed, no more timeouts can occur on the effected interfaces.

BASIC/UX Specifics
All channels of MUX interfaces have timeouts disabled by OFF TIMEOUT without an
interface select code.

432 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

ON

This statement transfers program execution to one of several destinations selected by the
value of the pointer.

Item

pointer

line number

line label

Description Range

numeric expression, rounded to an integer 1 thru 74

integer constant identifying a program line 1 thru 32 766

name of a program line any valid name

Example Statements
ON X1 GOTO 100.150.170
IF Point THEN ON Point GOSUB First.Second.Third.Last

Semantics
If the pointer is 1, the first line number or label is used. If the pointer is 2, the second
line identifier is used, and so on. If GOSUB is used, the RETURN is to the line following
the ON ... GOSUB statement.

If the pointer is less than 1 or greater than the number of line labels or numbers, error
19 is generated. The specified line numbers or line labels must be in the same context
as the ON statement.

Keyword Dictionary 433

ON CDIAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

No
Yes
Yes

This statement sets up and enables a branch to be taken upon sensing rotation of one of
the dials on a "control dial" device.

Item

priority

line label

line number

subprogram
name

Description Range

numeric expression, rounded to an integer; 1 thru 15
Default = 1

name of a program line any valid line name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
100 ON CDIAL GOSUB Dial_serv_rtn
200 ON CDIAL,Priority CALL Dial_sub

434 Keyword Dictionary

Semantics
All CDIAL function registers are automatically cleared when ON CDIAL is executed.

The interrupt service routine for the branch initiated when one of the control dials is
rotated should read the number of pulses with the CDIAL function.

If ON CDIAL is used to set up control dial interrupts and then disabled (with OFF
CDIAL), the CDIAL function can still be used to determine valid information about
control dials: however, note that subsequent pulses will not be accumulated into the
CDIAL registers, and when a register is read with CDIAL, that register is automatically
cleared by the system.

The most recent ON CDIAL (or OFF CDIAL) overrides any previous ON CDIAL
branching. If the overriding branch is defined in another context (such as in a
SUB subprogram or user-defined FN), then the overriding branch is canceled and the
overridden branch is restored upon return to the calling context.

The ON CDIAL statement behaves like the ON KNOB and ON HIL EXT statements:

• When ON CDIAL is executed in a SUB context and program control exits that
context, the pulses from control dials will continue to be accumulated (and can be
read by CDIAL). No interrupts occur if there is no ON CDIAL active in the current
context .

• Conversely, if an ON CDIAL has been executed in a context and then OFF CDIAL
is executed in a called context, then upon returning to the calling context the
pulses will be routed to the BASIC system (instead of the CDIAL function) and
no interrupts will be initiated.

Keyword Dictionary 435

The priority can be specified, with the highest represented by a value of 15. (This is the
highest user-specifiable priority; however, ON END and ON TIMEOUT have priorities
of 16, and ON ERROR has a priority of 17.) An ON CDIAL branch can interrupt the
currently executing program segment, if its priority is higher than the current SYSTEM
PRIORITY (use SYSTEM$("SYSTEM PRIORITY") to determine the current priority).

Upon completion of the interrupt service routine, CALL and GOSUB branches are
returned to the next line that would have been executed if the ON CDIAL branch had not
been serviced; the system priority is returned to the value in effect before the ON CDIAL
branch occurred. RECOVER forces the program to go directly to the specified line in
the context containing the ON CDIAL statement; when RECOVER forces a change of
context, the system priority is restored to the value which existed in the original (defining)
context at the time that the context was exited.

CALL and RECOVER remain active (that is, they can initiate branches) when the
context changes to a subprogram (SUB), unless the change in context is caused by a
keyboard-originated CALL statement. GOSUB and GOTO remain active when the
context changes to a subprogram, but the branch is not initiated until after the calling
context is restored.

ON CDIAL branches are disabled by DISABLE, temporarily disabled when the program
is executing an INPUT, LINPUT, or ENTER KBD ... statement; and deactivated by
OFF CDIAL.

ON CDIAL does not initiate branches for other "knob" devices (such as built-in knobs
of 98203 keyboards or HIL mouse devices).

436 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CLOCK

No
Yes
Yes

ON CYCLE

This statement defines and enables an event-initiated branch to be taken each time the
specified number of seconds has elapsed.

Item

seconds

priority

line label

line number

subprogram
name

Description Range

numeric expression, rounded to the nearest 0.01 thru 167772.16
0.02 second

numeric expression, rounded to an integer; 1 thru 15
Default = 1

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON CYCLE 1 GOSUB One_second
ON CYCLE 3600,12 CALL Chime

Keyword Dictionary 437

Semantics
The most recent ON CYCLE (or OFF CYCLE) definition overrides any previous ON
CYCLE definition. If the overriding ON CYCLE definition occurs in a context different
from the one in which the overridden ON CYCLE occurs, the overridden ON CYCLE is
restored when the calling context is restored, but the time value of the more recent ON
CYCLE remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON CYCLE can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON CYCLE
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON CYCLE
statement. CALL and GOSUB will return to the next line that would have been executed
if the CYCLE event had not been serviced, and the system priority is restored to that
which existed before the ON CYCLE branch was taken. RECOVER forces the program
to go directly to the specified line in the context containing that ON CYCLE statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON CYCLE is disabled by DISABLE and deactivated by OFF CYCLE. If the cycle value
is short enough that the computer cannot service it, the interrupt will be lost.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASIC/UX is started for the timer.

438 Keyword Dictionary

ON DELAY
Supported On
Option Required
Keyboard Executable
Programmable

WS,UX
CLOCK

No
Yes
Yes In an IF ... THEN

This statement defines and enables an event-initiated branch to be taken after the
specified number of seconds has elapsed.

Item

seconds

priority

line label

line number

subprogram
name

Examples

Description Range

numeric expression, rounded to the nearest 0.01 thru 167772.16
0.02 second

numeric expression, rounded to an integer; 1 thru 15
Default = 1

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

ON DELAY 10 GOTO Default
ON DELAY 3,2 GOSUB Low_level

Keyword Dictionary 439

Semantics
The most recent ON DELAY (or OFF DELAY) definition overrides any previous ON
DELAY definition. If the overriding ON DELAY definition occurs in a context different
from the one in which the overridden ON DELAY occurs, the overridden ON DELAY is
restored when the calling context is restored, but the time value of the more recent ON
DELAY remains in effect.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON DELAY can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON DELAY
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON DELAY
statement. CALL and GOSUB will return to the next line that would have been executed
if the DELAY event had not been serviced, and the system priority is restored to that
which existed before the ON DELAY branch was taken. RECOVER forces the program
to go directly to the specified line in the context containing that ON DELAY statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated

call. GOSUB and GOTO remain active when the context changes to a subprogram, but
the branch cannot be taken until the calling context is restored.

ON DELAY is disabled by DISABLE and deactivated by OFF DELAY.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASICjUX is started for the timer.

440 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

ON END

This statement defines and enables an event-initiated branch to be taken when end-of-file
is reached on the mass storage file associated with the specified I/O path.

Item

I/O path name

line label

line number

subprogram
name

Description Range

name assigned to a mass storage file any valid name
(see ASSIGN)

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON END ~Source GOTO Next_file
ON END ~Dest CALL Expand

Keyword Dictionary 441

Semantics
The ON END branch is triggered by any of the following events:

• When the physical end-of-file is encountered.

• When an ENTER statement reads the byte at EOF or beyond.

• When a random access OUTPUT or ENTER requires more than one defined record.

• When a random access OUTPUT is attempted beyond the next available record.
(If EOF is the first byte of a record, then that record is the next available record.
If EOF is not at the first byte of a record, the following record is the next available
record.)

The priority associated with ON END is higher than priority 15. ON TIMEOUT and
ON ERROR have the same priority as ON END, and can interrupt an ON END service
routine.

Any specified line label or line number must be in the same context as the ON END
statement. CALL and GOSUB will return to the line immediately following the one
during which the end-of-file occurred, and the system priority is restored to that which
existed before the ON END branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON END statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, if the
I/O path name is known in the new context. CALL and RECOVER do not remain active
if the context changes as a result of a keyboard-originated call. GOSUB and GOTO do
not remain active when the context changes to a subprogram.

The end-of-record error (error 60) or the end-of-file error (error 59) can be trapped by
ON ERROR if ON END is not active. ON END is deactivated by OFF END. DISABLE
does not affect ON END.

442 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
TRANS

No
Yes
Yes

ON EOR

This statement defines and enables an event-initiated branch to be taken when an end­
of-record is encountered during a TRANSFER.

Item

I/O path name

priority

line label

line number

subprogram
name

Description Range

name assigned to a device, a group of de- any valid name
vices, or a mass storage file

numeric expression, rounded to an integer; 1 thru 15
Default = 1

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON EOR CGpio GOSUB Gpio_eor
ON EOR CHpib.9 CALL Eor_sensed

Keyword Dictionary 443

Semantics
The I/O path may be assigned either to a device1 a group of devices1 or to a mass storage
file or pipe. If the I/O path is assigned to a BUFFER1 an error is reported when the ON
EaR statement is executed.

If a TRANSFER statement uses an I/O path name which is local to a subprogram and
the TRANSFER has not completed by the time the context is exited1 returning to the
original context will be deferred until the end of the TRANSFER; at that time the ON
EaR event cannot be serviced. To ensure that the event will be serviced, a statement
that cannot be executed in overlap with the TRANSFER must be executed before the
context is exited. A WAIT FOR EOR ~Non_buf statement is used for this purpose.

End-of-record delimiters are defined by the EaR parameters of the TRANSFER state­
ment (i.e.1 DELIMl COUNT1 or END). An EaR event occurs when any of the specified
end-of-record delimiters is encountered during a TRANSFER. The event1s occurrence is
logged1 and the specified branch is taken when system priority permits.

The most recent ON EaR (or OFF EaR) definition for a given I/O path name overrides
any previous ON EaR definition. If the overriding ON EaR definition occurs in a context
different from the one in which the overridden ON EaR occurs1 the overridden ON EaR
is restored when the calling context is restored.

The priority can be specified1 with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR1 ON ENDl and ON
TIMEOUT (whose priorities are not user-definable). ON EaR can interrupt service
routines of other event-initiated branches with user-definable priorities1 if the ON EaR
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EaR
statement. CALL and GOSUB will return to the next line that would have been executed
if the EaR event had not been serviced1 and the system priority is restored to that which
existed before the ON EaR branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON EaR statement. When
RECOVER forces a change of context 1 the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprograml unless
the change in context is caused by a keyboard-originated

call. GOSUB and GOTO remain active when the context changes to a subprograml but
the branch cannot be taken until the calling context is restored.

ON EaR is disabled by DISABLE and deactivated by OFF EaR.

444 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
TRANS

No
Yes
Yes

ON EOT

This statement defines and enables an event-initiated branch to be taken when the last
byte is transferred by a TRANSFER statement.

Item

I/O path name

priority

line label

line number

subprogram
name

Description Range

name assigned to a device, a group of de- any valid name
vices, or a mass storage file

numeric expression, rounded to an integer; 1 thru 15
Default = 1

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON EOT ~File GOTO Finished
ON EOT ~Hpib.5 CALL More

Keyword Dictionary 445

Semantics
The I/O path may be assigned either to a device, a group of devices, or to a mass storage
file or pipe. If the I/O path is assigned to a BUFFER, an error is reported when the ON
EaT statement is executed.

If a TRANSFER statement uses an I/O path name which is local to a subprogram and
the TRANSFER has not completed by the time the context is exited, returning to the
original context will be deferred until the end of the TRANSFER; at that time the ON
EaT event cannot be serviced. To ensure that the event will be serviced, a statement
that cannot be executed in overlap with the TRANSFER must be executed before leaving
the context. A WAIT FOR EOT ~Non_buf statement is used for this purpose.

The most recent ON EaT (or OFF EaT) definition for a given path name overrides any
previous ON EaT definition. If the overriding ON EaT definition occurs in a context
different from the one in which the overridden ON EaT occurs. the overridden ON EaT
is restored when the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON EaT can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON EaT
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EaT
statement. CALL and GOSUB will return to the next line that would have been executed
if the EaT event had not been serviced, and the system priority is restored to that which
existed before the ON EaT branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON EaT statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated

call. GOSUB and GOTO remain active when the context changes to a subprogram, but
the branch cannot be taken until the calling context is restored.

ON EaT is disabled by DISABLE and deactivated by OFF EaT.

446 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

ON ERROR

This statement defines and enables an event-initiated branch which results from a
trappable error. This allows you to write your own error-handling routines.

Item Description Range

line label name of a program line any valid name

line number

subprogram
name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON ERROR GOTO 1200
ON ERROR CALL Report

Keyword Dictionary 447

Semantics
The ON ERROR statement has the highest priority of any event-initiated branch. ON
ERROR can interrupt any event-initiated service routine.

Any specified line label or line number must be in the same context as the ON ERROR
statement. RECOVER forces the program to go directly to the specified line in the
context containing the ON ERROR statement.

Returns via RETURN, SUBEXIT, or SUBEND from ON ERROR GOSUB or ON
ERROR CALL routines are different from regular GOSUB or CALL returns. When ON
ERROR is in effect, the program resumes at the beginning of the line where the error
occurred. If the ON ERROR routine did not correct the cause of the error, the error is
repeated. This causes an infinite loop between the line in error and the error handling
routine. To avoid a retry of the line which caused the error, use ERROR RETURN
instead of RETURN or ERROR SUBEXIT instead of SUBEXIT. When execution returns
from the ON ERROR routine, system priority is restored to that which existed before
the ON ERROR branch was taken.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. In this case, the error is
reported to the user, as if ON ERROR had not been executed.

GOSUB and GOTO do not remain active when the context changes to a subprogram.
If an error occurs, the error is reported to the user, as if ON ERROR had not been
executed.

If an execution error occurs while servlcmg an ON ERROR CALL or ON ERROR
GOSUB, program execution stops. If an execution error occurs while servicing an ON
ERROR GOTO or ON ERROR RECOVER routine, an infinite loop can occur between
the line in error and the GOTO or RECOVER routine.

If an ON ERROR routine cannot be serviced because inadequate memory is available for
the computer, the original error is reported and program execution pauses at that point.

ON ERROR is deactivated by OFF ERROR. DISABLE does not affect ON ERROR.

448 Keyword Dictionary

ON EXT SIGNAL
Supported On UX
Option Required nl a
Keyboard Executable No
Programmable Yes
In an IF ... THEN Yes
This statement defines an event-initiated branch to be taken when a system generated
signal is received.

ON EXT SIGNAL

Item

signal number

priority

line label

line number

subprogram
name

Description Range

numeric expression, rounded to integer (see below)

numeric expression, rounded to integer (De- 1 thru 15
fault = 1)

name of a program line

integer const identifying a program line

name of a SUB or CSUB

any valid name

1 thru 32766

any valid name

Example Statements
ON EXT SIGNAL 4 GO TO 10
ON EXT SIGNAL Sigusr2.12 GOSUB Fred
ON EXT SIGNAL Sigterm.15 CALL Terminate

Keyword Dictionary 449

Semantics
The ON EXT SIGNAL statement specifies a new action to be taken when a system
generated signal is received by BASIC. If an ON EXT SIGNAL statement is not specified,
then a default system action is be taken. The action for a specific EXT SIGNAL is
specified in the table below. The two possible actions that can be taken are:

Exit BASIC is immediately, but gracefully exited.

Error An error [number to be determined] is generated at the next end-of-line.

All ON EXT SIGNAL actions take place at end-of-line except the default action to exit,
which takes effect imrr :diately upon receipt.

BASIC does not allow all system signals to be caught by users. The table below specifies
all system signals, and indicates which can be specified in the EXT SIGNAL statements.
All other values cause an error. This table also specifies the default EXT SIGNAL
handling action which takes place in the absence of an ON EXT SIGNAL, or after an
OFF EXT SIGNAL.

450 Keyword Dictionary

Signal Signal Valid Default
Number Name Signal Action Comment

1 SIGHUP yes exit hangup (lost connection)

2 SIGINT no - BASIC "CLR-I/O" signal

3 SIGQUIT no - BASIC "RESET" signal

4 SIGILL no - illegal instruction

5 SIGTRAP no - BASIC debugging signal

6 SIGIOT yes error software generated (abort)

7 SIGEMT yes error software generated

8 SIGFPE no - floating point execution used in-
ternally by BASIC

9 SIGKILL no - not catchable by anyone

10 SIGBUS no - hardware bus error

11 SIGSEGV no - segmentation violation

12 SIGSYS yes error bad argument to system call

13 SIGPIPE no - write on pipe with no reader

14 SIGALRM yes error system alarm clock
(used by BASIC)

15 SIGTERM yes exit software termination signal

16 SIGUSR1 no - used by BASIC for communica-
tions

17 SIGUSR2 yes error user defined signal

18 SIGCLD no - used by BASIC

19 SIGPWR no - powerfail; never reaches user

20 SIGVTALRM yes error virtual timer alarm

Keyword Dictionary 451

Signal Signal Valid Default
Number Name Signal Action Comment

21 8IGPROF yes error profiling timer alarm

22 8IGIO no - used by BA8IC

23 8IGWINDOW no - window / mouse signal

24 8IG8TOP no - not supported on 8300

25 8IGT8TP no - not supported on 8300

26 8IGCONT no - not supported on 8300

27 8IGTTIN no - not supported on 8300

28 8IGTTOU no - not supported on 8300

29 8IGURG no - urgent condition in I/O

30 - no - not defined for HP -UX

31 - no - not defined for HP-UX

32 - no - not defined for HP-UX

EXT SIGNALS default to and remain enabled unless explicitly disabled with the
DISABLE EXT SIGNAL statement.

The priority of an EXT SIGNAL can be specified in the ON EXT SIGNAL statement,
with the highest priority represented by 15. The highest priority is less than the priority
for ON ERROR, ON END, and ON TIMEOUT. ON EXT SIGNAL can interrupt service
routines of other event-initiated branches which have user-definable priorities, if the ON
EXT SIGNAL priority is higher than the priority of the service routine (the current
system priority). CALL and GOSUB service routines get the priority specified in the
ON ... statement which set up the branch that invoked them. The system priority is not
changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON EXT
SIGNAL statement. CALL and GOSUB return to the next line that would have
been executed if the EXT SIGNAL event had not been serviced. and the system
priority is restored to that which existed before the ON EXT SIGNAL branch was
taken. RECOVER forces the program to go directly to the specified line in the context
containing that ON EXT SIGNAL statement. When recover forces a change of context,
the system priority is restored to that which existed in the original (defining) context at
the time that context was exited.

452 Keyword Dictionary

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON EXT SIGNAL is disabled by DISABLE EXT SIGNAL or DISABLE and deactivated
by OFF EXT SIGNAL.

The current state of the system signal handling can be determined through the STATUS
statement. EXT SIGNALS use the pseudo-select code 33 for providing status infor­
mation. For each EXT SIGNAL, a status register exists with the same number, and
providing the following information:

Status
Number Comment

-1 signal not catchable by user

0 signal disabled

1 signal enabled

Thus to determine the state of the SIGTERM (15) signal,

STATUS 33.15;A

When an EXT SIGNAL is enabled, and there is no ON EXT SIGNAL setup for it and
the default action is an error, a program error is generated if a program is running,
or if in a keyboard command (including EXECUTE). If a program is running, an ON
ERROR statement can catch the error.

When BASIC is idle (not running a program and not executing a keyboard command) all
EXT SIGNALS except SIGHUP and SIGTERM are ignored. SIGHUP and SIGTERM
exit if they are enabled.

Note that all EXT SIGNALs default to being enabled.

Keyword Dictionary 453

ON HIL EXT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

No
Yes
Yes

This statement enables an end-of-line interrupt in response to receiving data from HIL
devices whose poll records are not otherwise being processed by the BASIC system.

Item

address mask

priority

line label

line number

subprogram
name

Description/Default

the sum of 2 raised to the power of each
of the addresses of the desired devices;
Default = 254

numeric expression, rounded to a integer;
Default = 1

name of a program line

integer constant identifying a program line

name of a SUB or CSUB subprogram

Example Statement
ON HIL EXT 8 GOSUB Ser_routine
ON HIL EXT Mask, Priority CALL Sub_prog
ON HIL EXT 2,3 GOTO Label_1

454 Keyword Dictionary

R~nge
Restrictions

any even number
from 2 to 254

1 thru 15

any valid name

1 thru 32766

any valid name

Semantics
The address mask provides the capability of being able to enable polling of several devices
using the same ON HIL EXT statement. This mask is obtained by raising 2 to the power
of each of the addresses of desired devices, and adding these values. Suppose you want
to create a mask which would allow interrupts from HP-HIL devices at addresses 1 and
3. You would take 2 and raise it to the first power and add this result to 2 raised to
the third power; the final result is a mask value of 10. This indicates that end-of-line
interrupts can be received from HP-HIL devices at addresses 1 and 3 in the HP-HIL link.
Note that the default mask is 254 (all devices in the link).

While interrupts are enabled, poll records are accumulated and returned via the
HILBUF$ function. If the HIL SEND statement results in data being returned from
the device, the data is put into HILBUF$ even if HP-HIL interrupts are not enabled
(i.e. ON HIL EXT is not currently active). Note that no interrupt is generated, even if
HP-HIL interrupts are enabled (i.e. ON HIL EXT is currently active), for data placed
in HILBUF$ as a result of HIL SEND. However, care should be taken in this case, since
executing ON HIL EXT clears HILBUF$.

HP-HIL devices which can use the ON HIL EXT statement are those whose poll records
are not being processed for another purpose by the BASIC system or the Keyboard
controller. These devices are grouped into two categories:

• Absolute positioning devices which are not the current GRAPHICS INPUT device.
Examples of these devices are as follows: Touchscreen (HP 35723A), A-size Digitizer
(HP 46087 A), B-size Digitizer (HP 46088A). Note that both digitizers return data
too fast to be processed using the HILBUF$ function; therefore, it is best to use
the GRAPHICS INPUT IS statement with these devices along with the READ
LOCATOR or DIGITIZE statement .

• HP-HIL devices with Device ID's less than hexadecimal 60. Examples of these
devices are as follows: Bar-code Reader (HP 92916A), ID Module (HP 46084A),
Function Box (HP 46086A), Vectra Keyboard (HP 46030A).

Keyword Dictionary 455

The main HP-HIL devices which cannot use this function are:

• Relative pointing devices, such as the HP Mouse (HP 46060A) and Control Dial
Box (HP 46085A). Since the HP 98203C keyboard has a knob on it, it is considered
a relative pointing device.

• Current GRAPHICS INPUT devices.

• All system Keyboards (includes HP 98203C as well as HP 46020/21A). Their poll
records are processed by the Keyboard controller and the keycodes returned to
BASIC via a different interface.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON HIL EXT can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON HIL
EXT priority is higher than the priority of the service routine (the current system
priority). CALL and GOSUB service routines get the priority specified in the ON ...
statement which set up the branch that invoked them. The system priority is not changed
when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON HIL
EXT statement. CALL and GOSUB will return to the next line that would have been
executed if the HIL EXT event had not been serviced, and the system priority is restored
to that which existed before the ON HIL EXT branch was taken. RECOVER forces the
program to go directly to the specified line in the context containing the ON HIL EXT
statement. When RECOVER forces a change of context, the system priority is restored
to that which existed in the original (defining) context at the time that context was
exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

The mo~t recent ON HIL EXT (or OFF HIL EXT) overrides any previous ON HIL EXT
definition. If the overriding ON HIL EXT occurs in another context (such as in a SUB
subprogram), then the overridden ON HIL EXT branch is restored when the calling
context is restored. (See below for restrictions.)

ON HIL EXT is deactivated by OFF HIL EXT.

456 Keyword Dictionary

The ON HIL EXT statement behaves like the ON CDIAL and ON KNOB statements:

• When ON HIL EXT is executed in a SUB context and program control exits that
context, the data from the enabled devices will continue to be accumulated (and
can be read by HILBUF$-unless lost due to buffer overflow). No interrupts occur
if there is no ON HIL EXT active in the current context .

• Conversely, if an ON HIL EXT has been executed in a context and the OFF HIL
EXT is executed in a called context, upon returning to the calling context, the data
is not accumulated for HILBUF$ and no interrupts will be initiated.

If ON HIL EXT is executed in a context with one mask value, and then another ON
HIL EXT is executed in a called context with a different mask value, the former mask
value is not restored on return to the calling context. This behavior is similar to the
time parameters of ON CYCLE and ON DELAY.

Keyword Dictionary 457

ONINTR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10
No
Yes
Yes

This statement defines an event-initiated branch to be taken when an interface card
generates an interrupt. The interrupts must be explicitly enabled with an ENABLE
INTR statement.

Item

interface select
code

priority

line label

line number

subprogram
name

Description Range

numeric expression, rounded to an integer 5, 7 thru 31

numeric expression, rounded to an integer; 1 thru 15
Default=1

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON INTR 7 GOSUB 500
ON INTR Isc.4 CALL Service

458 Keyword Dictionary

Semantics
The occurrence of an interrupt performs an implicit DISABLE INTR for the interface.
An ENABLE INTR must be performed to re-enable the interface for subsequent event­
initiated branches. Another ON INTR is not required, nor must the mask for ENABLE
INTR be redefined.

The priority can be specified, with highest priority represented by 15. The highest priority
is less than the priority for ON ERROR, ON END, and ON TIMEOUT. ON INTR can
interrupt service routines of other event-initiated branches which have user-definable
priorities, if the ON INTR priority is higher than the priority of the service routine (the
current system priority). CALL and GOSUB service routines get the priority specified
in the ON ... statement which set up the branch that invoked them. The system priority
is not changed when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON INTR
statement. CALL and GOSUB will return to the next line that would have been executed
if the INTR event had not been serviced, and the system priority is restored to that which
existed before the ON INTR branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON INTR statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON INTR is disabled by DISABLE INTR or DISABLE and deactivated by OFF INTR.

ON INTR and OFF INTR statements may be executed for any I/O card in the machine.
I t is not necessary to have a driver for the card.

Keyword Dictionary 459

ON KBD
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This statement defines and enables an event-initiated branch to be taken when a key is
pressed.

Item

priority

line label

line number

subprogram
name

Description Range

numeric expression, rounded to an integer; 1 thru 15
Default = 1

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON KBD GOSUB 770
ON KBD.9 CALL Get_key

460 Keyword Dictionary

Semantics
Specifying the secondary keyword ALL causes all keys except I RESET I, I SHIFT I, and I CTRL I
to be trapped. When ALL is omitted, the untrapped keys are those just mentioned, the
softkeys, I PAUSE I, I STOP I, I CLR I/O I, I Break I, I System I, I User I, I Menu I, and I Shift II Menu I. When
not trapped, these keys perform their normal functions. When the softkeys are trapped,
ON KBD branching overrides any ON KEY branching.

A keystroke triggers a keyboard interrupt and initiates a branch to the specified routine
when priority allows. If keystrokes occur while branching is held off by priority, the
keystrokes are stored in a special buffer. When keystrokes are in the buffer, branching
will occur when priority allows. This buffer is read and cleared by the KBD$ function
(see the KBD$ entry).

Knob rotation will generate ON KBD interrupts unless an ON KNOB statement
has been executed. Clockwise rotation of the knob produces right-arrow keystrokes;
counterclockwise rotation produces left-arrow keystokes. If the I SHIFT I key is pressed
while turning the knob, then clockwise rotation of the knob produces up-arrow keystrokes;
counterclockwise rotation produces down-arrow key strokes. Since one rotation of the
knob is equivalent to 20 keystrokes (more with HP-HIL knobs), keyboard buffer overflow
may occur if the BASIC service routine does not process the keys rapidly.

Live keyboard, editing, and display control functions are suspended during ON KBD. To
restore a key's normal function the keystroke may be OUTPUT to select code 2.

The most recent ON KBD (or OFF KBD) definition overrides any previous ON KBD
definition. If the overriding ON KBD definition occurs in a context different from the
one in which the overridden ON KBD occurs, the overridden ON KBD is restored when
the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON KBD can interrupt sevice
routines of other event-initiated branches with user-definable priorities, if the ON KBD
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Keyword Dictionary 461

Any specified line label or line number must be in the same context as the ON KBD
statement. CALL and GOSUB will return to the next line that would have been executed
if the KBD event had not been serviced, and the system priority is restored to that which
existed before the ON KBD branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON KBD statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON KBD is disabled by DISABLE, deactivated by OFF KBD, and temporarily deacti­
vated when the program is executing LINPUT, INPUT, or ENTER KBD.

You can use a relative pointing device, such as the HP 46060A mouse on an HP-HIL
interface, if the KBD BIN is present.

462 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

ON KEY

This statement defines and enables an event-initiated branch to be taken when a softkey
is pressed.

Item

key selector

prompt

priority

line label

line number

subprogram
name

Description

numeric expression, rounded to an integer

string expression;
Default = no label

o thru 23

numeric expression, rounded to an integer; 1 thru 15
Default=1

Range

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON KEY 0 GOTO 150
ON KEY 5 LABEL IPrint",3 GOSUB Report

Keyword Dictionary 463

Semantics
The most recently executed ON KEY (or OFF KEY) definition for a particular softkey
overrides any previous key definition. If the overriding ON KEY definition occurs in a
context different from the one in which the overridden ON KEY occurs, the overridden
ON KEY is restored when the calling context is restored.

Labels appear in the two bottom lines of the CRT. The label of any key is bound to
the current ON KEY definition. Therefore, when a definition is changed or restored, the
label changes accordingly. If no label is specified, that label field is blank. Refer to the
BASIC Programming Techniques manual for a discussion of these labels.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). On KEY can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON KEY
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KEY
statement. CALL and GOSUB will return to the next line that would have been executed
if the KEY event had not been serviced, and the system priority is restored to that which
existed before the ON KEY branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON KEY statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON KEY is disabled by DISABLE, deactivated by OFF KEY, and temporarily deacti­
vated when the program is paused or executing LINPUT, INPUT, or ENTER KBD.

464 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

ON KNOB

This statement defines and enables an event-initiated branch to be taken when the knob
is turned.

Item Description

seconds numeric expression, rounded to the nearest
0.01 second

priority numeric expression, rounded to an integer;
Default = 1

line label name of a program line

line number integer constant identifying a program line

subprogram name of a SUB or CSUB subprogram
name

Example Statements
ON KNOB .1 GOSUB 250
ON KNOB .333,Priority CALL Pulses

Range

0.01 thru 2.55

1 thru 15

any valid name

1 thru 32766

any valid name

Keyword Dictionary 465

Semantics
Turning the knob (cursor wheel) generates pulses. After ON KNOB is activated (or re­
activated), the first pulse received starts a sampling interval. The "seconds" parameter
establishes the length of that sampling interval. At the end of the sampling interval,
the ON KNOB branch is taken if the net number of pulses received during the interval
is not zero and priority permits. The KNOBX and KNOBY functions can be used to
determine the number of pulses received during the interval. If the ON KNOB branch is
held off for any reason, the KNOBX and KNOBY functions accumulate the pulses (see
KNOBX and KNOBY).

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON KNOB can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON KNOB
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON KNOB
statement. CALL and GOSUB will return to the next line that would have been executed
if the KNOB event had not been serviced, and the system priority is restored to that
which existed before the ON KNOB branch was taken. RECOVER forces the program
to go directly to the specified line in the context containing that ON KNOB statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

The most recent ON KNOB (or OFF KNOB) definition overrides any previous ON
KNOB definition. If the overriding ON KNOB definition occurs in a context different
from the one in which the overridden ON KNOB occurs, the overridden ON KNOB is
restored when the calling context is restored, but the "seconds" parameter of the more
recent ON KNOB remains in effect. (See below for restrictions.)

ON KNOB is disabled by DISABLE and deactivated by OFF KNOB.

466 Keyword Dictionary

You can use an HP-HIL relative pointing device, such as a mouse or knob, if the KBD
binary is loaded.

The ON KNOB statement behaves like the ON CDIAL and ON HIL EXT statements:

• When ON KNOB is executed in a SUB context and program control exits that
context, the pulses from control dials will continue to be accumulated (and can
be read by KNOBX and KNOBY). No interrupts occur if there is no ON KNOB
active in the current context .

• Conversely, if an ON KNOB has been executed in a context and then OFF KNOB
is executed in a called context, then upon returning to the calling context the
pulses will be routed to the BASIC system (instead of the KNOBX and KNOBY
functions) and no interrupts will be initiated.

Keyword Dictionary 467

ON SIGNAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10
No

Yes
Yes

This statement defines and enables an event-initiated branch to be taken when a SIGNAL
statement with the same signal selector is executed.

Item Description Range

signal selector numeric expression, rounded to an integer 0 thru 15

priority numeric expression, rounded to an integer; 1 thru 15
Default = 1

line label name of a program line any valid name

line number integer constant identifying a program line 1 thru 32 766

suprogram name name of a SUB or CSUB subprogram any valid name

Example Statements
ON SIGNAL 5 GOSUB 550
ON SIGNAL Bailout,i5 RECOVER Bail_here

468 Keyword Dictionary

Semantics
The most recent ON SIGNAL (or OFF SIGNAL) definition for a given signal selector
overrides any previous ON SIGNAL definition. If the overriding ON SIGNAL definition
occurs in a context different from the one in which the overridden ON SIGNAL occurs,
the overridden ON SIGNAL is restored when the calling context is restored.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and
ON TIMEOUT (whose priorities are not user-definable). ON SIGNAL can interrupt
service routines of other event-initiated branches with user-definable priorities, if the ON
SIGNAL priority is higher than the priority of the service routine (the current system
priority). CALL and GOSUB service routines get the priority specified in the ON ...
statement which set up the branch that invoked them. The system priority is not changed
when a GOTO branch is taken.

Any specified line label or line number must be in the same context as the ON SIGNAL
statement. CALL and GOSUB will return to the next line that would have been executed
if the SIGNAL event had not been serviced, and the system priority is restored to that
which existed before the ON SIGNAL branch was taken. RECOVER forces the program
to go directly to the specified line in the context containing that ON SIGNAL statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO
remain active when the context changes to a subprogram, but the branch cannot be
taken until the calling context is restored.

ON SIGNAL is disabled by DISABLE and deactivated by OFF SIGNAL.

Keyword Dictionary 469

ON TIME
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CLOCK

No
Yes
Yes

This statement defines and enables an event-initiated branch to be taken when the real­
time clock reaches a specified time.

Item

seconds

priority

line label

line number

subprogram
name

Description Range

numeric expression, rounded to the nearest 0 thru 86399.99
0.02 second

numeric expression, rounded to an integer; 1 thru 15
Default = 1

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON TIME 3600*8 GOTO Work
ON TIME (TIMEDATE+3600) MOD 86400 CALL One_hour

470 Keyword Dictionary

Semantics
The most recent ON TIME (or OFF TIME) definition overrides any previous ON TIME
definition. If the overriding ON TIME definition occurs in a context different from the
one in which the overridden ON TIME occurs, the overridden ON TIME is restored when
the calling context is restored, but the time value of the more recent ON TIME remains
in effect.

The priority can be specified, with the highest priority represented by 15. The highest
user-defined priority (15) is less than the priority for ON ERROR, ON END, and ON
TIMEOUT (whose priorities are not user-definable). ON TIME can interrupt service
routines of other event-initiated branches with user-definable priorities, if the ON TIME
priority is higher than the priority of the service routine (the current system priority).
CALL and GOSUB service routines get the priority specified in the ON... statement
which set up the branch that invoked them. The system priority is not changed when a
GOTO branch is taken.

CALL and GOSUB will return to the next line that would have been executed if the
TIME event had not been serviced, and the system priority is restored to that which
existed before the ON TIME branch was taken. RECOVER forces the program to go
directly to the specified line in the context containing that ON TIME statement. When
RECOVER forces a change of context, the system priority is restored to that which
existed in the original (defining) context at the time that context was exited.

Any specified line label or line number must be in the same context as the ON
TIME statement. CALL and RECOVER remain active when the context changes to
a subprogram, unless the change in context is caused by a keyboard-originated call.
GOSUB and GOTO remain active when the context changes to a subprogram, but the
branch cannot be taken until the calling context is restored.

Unlike ON CYCLE, an ON TIME statement requires an exact match between the clock
and the time specified in the defining statement. If the event was missed and not logged,
re-executing the ON TIME statement will not result in a branch being taken.

ON TIME is disabled by DISABLE and deactivated by OFF TIME.

BASIC/UX Specifics
Resolution is 20 milliseconds. A new child process of BASICjUX is started for the timer.

Keyword Dictionary 471

ON TIMEOUT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This statement defines and enables an event-initiated branch to be taken when an I/O
timeout occurs on the specified interface.

Item

interface select
code

seconds

line label

line number

subprogram
name

Description Range

numeric expression, rounded to an integer 7 thru 31

numeric expression, rounded to the nearest 0.001 thru 32.767
0.001 second

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

name of a SUB or CSUB subprogram any valid name

Example Statements
ON TIMEOUT, 2.554 GOTO 770
ON TIMEOUT Printer,Time GOSUB Message

472 Keyword Dictionary

Semantics
There is no default system timeout. If ON TIMEOUT is not in effect for an interface, a
device can cause the program to wait forever.

The specified branch occurs if an input or output is active on the interface and the
interface has not responded within the number of seconds specified. The computer waits
at least the specified time before generating an interrupt; however, it may wait up to an
additional 25% of the specified time.

Timeouts apply to ENTER and OUTPUT statements, and operations involving the
PRINTER IS, PRINTALL IS, and PLOTTER IS devices when they are external.
Timeouts do not apply to CONTROL, STATUS, READIO, WRITEIO, CRT alpha or
graphics I/O, real time clock I/O, keyboard I/O, or mass storage operations.

The priority associated with ON TIMEOUT is higher than priority 15. ON END and ON
ERROR have the same priority as ON TIMEOUT, and can interrupt an ON TIMEOUT
service routine.

Any specified line label or line number must be in the same context as the ON TIMEOUT
statement. CALL and GOSUB will return to the line immediately following the one
during which the timeout occurred, and the system priority is restored to that which
existed before the ON TIMEOUT branch was taken. RECOVER forces the program to
go directly to the specified line in the context containing that ON TIMEOUT statement.
When RECOVER forces a change of context, the system priority is restored to that
which existed in the original (defining) context at the time that context was exited.

CALL and RECOVER remain active when the context changes to a subprogram, unless
the change in context is caused by a keyboard-originated call. GOSUB and GOTO do
not remain active when the context changes to a subprogram. The TIMEOUT event
does remain active. Unlike other ON events, TIMEOUTs are never logged, they always
cause an immediate action. If a TIMEOUT occurs when the ON TIMEOUT branch
cannot be taken, an error 168 is generated. This can be trapped with ON ERROR. The
functions ERRN and ERRDs are set only when the error is generated. They are not set
when the ON TIMEOUT branch can be taken.

ON TIMEOUT is deactivated by OFF TIMEOUT. DISABLE does not affect ON
TIMEOUT.

Keyword Dictionary 473

ON TIMEOUT with SRM Interfaces
With SRM, ON TIMEOUT defines and enables a branch resulting from an I/O timeout
on the specified SRM interface. Although ON TIMEOUT is supported on SRM, its use
should be avoided because the asynchronous nature of the SRM system does not allow
predictable results.

A TIMEOUT occurring during statements such as RE-SAVE and RE-STORE may leave
a temporary file on the mass storage device. The file's name is a IO-character identifier
(the first character is an alpha character, the rest are digits) derived from the value of
the workstation's real-time clock when the TIMEOUT occurred. You may wish to check
the contents of any such file before purging.

BASIC/UX Specifics
If the interface is a MUX. the interface select code must be a device selector with channel
number included. For example,

• ON TIMEOUT 16 gives an error.

• ON TIMEOUT 1600 works.

474 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This statement specifies the default lower bound of arrays.

Example Statements
OPTION BASE 0
OPTION BASE 1

Semantics

OPTION BASE

This statement can occur only once in each context. If used, OPTION BASE must
precede any explicit variable declarations in a context. Since arrays are passed to
subprograms by reference, they maintain their original lower bound, even if the new
context has a different OPTION BASE. Any context that does not contain an OPTION
BASE statement assumes default lower bounds of zero.

The OPTION BASE value is determined at pre run , and is used with all arrays declared
without explicit lower bounds in COM, DIM, INTEGER, and REAL statements as well
as with all implicitly dimensioned arrays. OPTION BASE is also used at runtime for
any arrays declared without lower bounds in ALLOCATE.

OPTIONAL

See the DEF FN and SUB statements.

Keyword Dictionary 475

OR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This operator returns a 1 or a 0 based on the logical inclusive-or of the arguments.

Example Statements
X=Y OR Z
IF File_type OR Device THEN Process

Semantics
An expression which evaluates to a non-zero value is treated as a logicall. An expression
must evaluate to zero to be treated as a logical O.

The truth table is:

A B AORB

0 0 0

0 1 1

1 0 1

1 1 1

476 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable

WS,UX

In an IF ... THEN

None
Yes
Yes
Yes

This statement outputs items to the specified destination.

Expanded diagram:

UJ
E
III
+'

+'
:::J
0.
+'
:::J
a

literal form of image specifier

image
specifier list

trailing puntuation
not allowed with USING

image
specifier list

OUTPUT

image,items

Keyword Dictionary 477

Item Description Range

I/O path name name assigned to a device, devices, mass any valid name
storage file, buffer, or pipe

record number

device selector

numeric expression, rounded to an integer

numeric expression, rounded to an integer

destination string name of a string variable
name

subscript

image line
number

image line label

image specifier

numeric expression, rounded to an integer

integer constant identifying an IMAGE
statement

name identifying an IMAGE statement

string expression

string array name name of a string array

numeric array
name

image specifier
list

repeat factor

name of a numeric array

literal

integer constant

1 thru 231 _1

(see Glossary)

any valid name

-32 767 thru +32767
(see "array" in Glossary)

1 thru 32766

any valid name

(see drawing)

any valid name

any valid name

(see next drawing)

1 thru 32767

literal string constant composed of characters from quote mark not allowed
the keyboard, including those generated us-
ing the ANY CHAR key

478 Keyword Dictionary

Image specif,er lIst

Radl' speclf ler cannot
be used wlthout a
dlglt specIf,er

Keyword Dictionary 479

Example Statements
OUTPUT 701;Number.String$;
OUTPUT ~File;Array(*).END
OUTPUT ~Rand.5 USING Fmt1;Item(5)
OUTPUT 12 USING "#.6A";B$[2;6]
OUTPUT ~Printer;Rank;Id;Name$

Semantics
Standard Numeric Format
The standard numeric format depends on the value of the number being displayed. If
the absolute value of the number is greater than or equal to lE-4 and less than 1E+6, it
is rounded to 12 digits and displayed in floating point notation. If it is not within these
limits, it is displayed in scientific notation. The standard numeric format is used unless
USING is selected, and may be specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers. The separator following the
item is also used as the separator between the real and imaginary parts.

Arrays
Entire arrays may be output by using the asterisk specifier. Each element in an array
is treated as an item by the OUTPUT statement, as if the items were listed separately,
separated by the punctuation following the array specifier. If no punctation follows the
array specifier, a comma is assumed. The array is output in row major order (rightmost
subscript varies fastest). COMPLEX arrays· are treated as if they were REAL arrays
with twice as many elements.

Files as Destination
If an I/O path has been assigned to a file, the file may be written to with OUTPUT
statements. The file must be an ASCII, BDAT, or HP-UX file. The attributes specified
in the ASSIGN statement are used if the file is a BDAT or HP-UX file (ASCII files are
always assigned a special case of the FORMAT ON attribute).

Serial access is available for ASCII, BDAT, and HP-UX files. Random access is available
for BDAT and HP-UX files. The end-of-file marker (EOF) and the file pointer are
important to both serial and random access. The file pointer is set to the beginning of
the file when the file is opened by an ASSIGN. It is updated by OUTPUT operations so
that it always points to the next byte to be written.

480 Keyword Dictionary

The EOF pointer is read from the media when the file is opened by an ASSIGN. On a
newly created file, EOF is set to the beginning of the file. After each OUTPUT operation,
the EOF pointer in the I/O path table is updated to the maximum of the file pointer
or the previous EOF value. The EOF pointer on the volume is updated at the following
times:

• When the current end-of-file changes.

• \Vhen END is specified in an OUTPUT statement directed to the file.

• When a CONTROL statement directed to the I/O path name changes the position
of the EOF.

Random access uses the record number parameter to write items to a specific location
in a file. The OUTPUT begins at the start of the specified record and must fit into one
record. The record specified cannot be beyond the record containing the EOF, if EOF
is at the first byte of a record. The record specified can be one record beyond the record
containing the EOF, if EOF is not at the first byte of a record. Random access is always
allowed to records preceding the EOF record. If you wish to write randomly to a newly
created file, either use a CONTROL statement to position the EOF in the last record,
or write some "dummy" data into every record.

When data is written to an ASCII file, each item is sent as an ASCII representation with
a 2-byte length header. You cannot use OUTPUT with USING to ASCII files; see the
following section, "OUTPUT with USING" for details.

Data sent to a BDAT or HP-UX file is sent in internal format if FORMAT OFF is
currently assigned to the I/O path (this is the default FORMAT attribute for these file
types), and is sent as ASCII characters if FORMAT ON has been explicitly assigned.
(See "Devices as Destination" for a description of these formats.)

OUTPUT to HFS Files
You must have W (write) permission on an HFS file, as well as X (search) permission on
all superior directories, to output data to the file. If you do not have these permissions,
error 183 is reported.

HFS files are extensible. If the data output to the file with this statement would overflow
the file's space allocation, the file is extended. The BASIC system allocates the additional
space needed to store the data being output, provided the disc contains enough unused
storage space.

Keyword Dictionary 481

OUTPUT to SRM Files
You must have W (write) access capability on an SRM file, as well as R (read) capability
on all superior directories, to output data to the file. If this capability is not public or if
a password protecting this capability was not used at the time the file was assigned an
I/O path name (with ASSIGN), error 62 is reported.

SRM files are extensible. If the data output to the file with this statement would overflow
the file's space allocation, the file is extended. The BASIC system allocates an additional
"extent size" amount of space, provided the disc contains enough unused storage space;
see one of the CREATE statements for a description of "extent size" .

Devices as Destination
An I/O path or a device selector may be used to direct OUTPUT to a device. If a
device selector is used, the default system attributes are used (see ASSIGN). If an I/O
path is used. the ASSIGN statement used to associate the I/O path with the device
also determines the attributes used. If multiple listeners were specified in the ASSIGN,
the OUTPUT is directed to all of them. If FORMAT ON is the current attribute, the
items are sent in ASCII. Items followed by a semicolon are sent with nothing following
them. Numeric items followed by a comma are sent with a comma following them. String
items followed by a comma are sent with a CR/LF following them. If the last item in
the OUTPUT statement has no punctuation following it, the current end-of-line (EOL)
sequence is sent after it. Trailing punctuation eliminates the automatic EOL.

If FORMAT OFF is the current attribute, items are sent to the device in internal format.
Punctuation following items has no effect on the OUTPUT. Two bytes are sent for each
INTEGER, eight bytes for each REAL, and sixteen bytes for each COMPLEX value.
Each string output consists of a four byte header containing the length of the string.
followed by the actual string characters. If the number of characters is odd, an additional
byte containing a blank is sent after the last character.

CRT as Destination
If the device selector is 1, the OUTPUT is directed to the CRT. OUTPUT 1 and PRINT
differ in their treatment of separators and print fields. The OUTPUT format is described
under "Devices as Destination." See the PRINT keyword for a discussion of that format.
OUTPUT 1 USING and PRINT USING to the CRT produce similar actions.

482 Keyword Dictionary

Keyboard as Destination
Outputs to device selector 2 may be used to simulate keystrokes. ASCII characters can
be sent directly (i.e. "hello"). Non-ASCII keys (such as I EXECUTE I) are simulated by a
two-byte sequence. The first byte is CHR$(255), and the second byte can be found in
the "Second Byte of Non-ASCII Key Sequences" table in the back of this book.

When simulating keystrokes, unwanted characters (such as the EOL sequence) can be
avoided with an image specifier (such as "#,B" or "#,K"). See "OUTPUT with USING."

Strings as Destination
If a string is used for the destination, the string is treated similarly to a file. However,
there is no file pointer; each OUTPUT begins at the beginning of the string, and writes
serially within the string.

Buffers as Destination (Requires TRANS)
When the destination is an I/O path name assigned to a buffer, data is placed in the
buffer beginning at the location indicated by the buffer's fill pointer. As data is sent, the
current number-of-bytes

register and fill pointer are adjusted accordingly. Encountering the empty pointer (buffer
full) produces an error unless a continuous outbound TRANSFER is emptying the buffer.
In this case, the OUTPUT will wait until there is more room in the buffer for data.

If an I/O path is currently being used in an inbound TRANSFER, and an OUTPUT
statement uses it as a destination, execution of the OUTPUT is deferred until the
completion of the TRANSFER. An OUTPUT can be concurrent with an outbound
TRANSFER only if the destination is the I/O path assigned to the buffer.

An OUTPUT to a string variable that is also a buffer will not update the buffer's pointers
and will probably corrupt the data in the buffer.

Pipes as Destination (BASIC/UX only)
If an I/O path has been assigned to a pipe, the pipe may be written to with OUTPUT
statements. The attributes specified in the ASSIGN statement are used. Data is sent
in internal format if FORMAT OFF is currently assigned to the I/O path, and is sent
as ASCII characters if FORMAT is currently assigned (this is the default FORMAT
attribute). (See "Devices as Destination" for a description of these formats.)

Keyword Dictionary 483

Using END with Devices
The secondary keyword END may be specified following the last item in an OUTPUT
statement. The result, when USING is not specified, is to suppress the EOL (End-of­
Line) sequence that would otherwise be output after the last byte of the last item. If a
comma is used to separate the last item from the END keyword, the corresponding item
terminator is output (CR/LF for string items or comma for numeric items).

With HP-IB interfaces, END specifies an EOI signal to be sent with the last data byte
of the last item. However, if no data is sent from the last output item, EOI is not sent.
With Data Communications interfaces, END specifies an end-of-data indication to be
sent with the last byte of the last output item.

OUTPUT With USING
When the computer executes an OUTPUT USING statement, it reads the image specifier,
acting on each field specifier (field specifiers are separated from each other by commas) as
it is encountered. If nothing is required from the output items, the field specifier is acted
upon without accessing the output list. When the field specifier requires characters, it
accesses the next item in the output list, using the entire item. Each element in an array
is considered a separate item.

The processing of image specifiers stops when there is no matching display item (and the
specifier requires a display item). If the image specifiers are exhausted before the display
items, they are reused, starting at the beginning.

COMPLEX values require two REAL image specifiers (i.e. each COMPLEX value is
treated like two REAL values).

If a numeric item requires more decimal places to the left of the decimal point than are
provided by the field specifier, an error is generated. A minus sign takes a digit place if M
or S is not used, and can generate unexpected overflows of the image field. If the number
contains more digits to the right of the decimal point than specified, it is rounded to fit
the specifier.

If a string is longer than the field specifier. it is truncated, and the right-most characters
are lost. If it is shorter than the specifier, trailing blanks are used to fill out the field.

OUTPUT with USING cannot be used with output to ASCII files. Instead, direct the
OUTPUT with USING to a string variable, and then OUTPUT this variable to the
file. For instance, OUTPUT StringS USING "5A,X,6D.D" ; Chars$,Number and then OUTPUT

<DFile ; StringS.

484 Keyword Dictionary

Effects of the image specifiers on the OUTPUT statement are shown in the following
table:

Image
Specifier Meaning

K Compact field. Outputs a number or string in standard form with no leading or
trailing blanks.

-K Same as K.

H Similar to K, except the number is output using the European number format
(comma radix). (Requires 10)

-H Same as H. (Requires 10)

S Outputs the number's sign (+ or -).

M Outputs the number's sign if negative, a blank if positive.

D Outputs one digit character. A leading zero is replaced by a blank. If the number
is negative and no sign image is specified, the minus sign will occupy a leading digit
position. If a sign is output, it will "float" to the left of the left-most digit.

Z Same as D, except that leading zeros are output.

* Like D, except that asterisks are output instead of leading zeros. (Requires 10)

Outputs a decimal-point radix indicator.

R

E

ESZ

ESZZ

ESZZZ

A

x
literal

B

Outputs a comma radix indicator (European radix). (Requires 10)

Outputs an E, a sign, and a two-dtgttexponent.

Outputs an E, a sign, and a one-digit exponent.

Same as E.

Outputs an E, a sign, and a three-digit exponent.

Outputs a string character. Trailing blanks are output if the number of characters
specified is greater than the number available in the corresponding string. If
the image specifier is exhausted before the corresponding string, the remaining
characters are ignored.

Outputs a blank.

Outputs the characters contained in the literal.

Outputs the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an INTEGER and the least-significant byte is
sent. If the number is greater than 32767, then 255 is used; if the number is less
than -32 768, then 0 is used.

Keyword Dictionary 485

Image
Specifier Meaning

W Outputs a 16-bit word as a two's-complement integer. The corresponding numeric
item is rounded to an INTEGER. If it is greater than 32767, then 32767 is sent;
if it is less than -32768, then -32768 is sent. If either an I/O path name with
the BYTE attribute or a device selector is used to access an 8-bit interface, two
bytes will be output; the most-significant byte is sent first. If an I/O path name
with the BYTE attribute is used to access a 16-bit interface, the BYTE attribute is
overridden, and one word is output in a single operation. If an I/O path name with
the WORD attribute is used to access a 16-bit interface, a null pad byte is output
whenever necessary to achieve alignment on a word boundary. If the destination is
a BDAT file, string variable, or buffer, the BYTE or WORD attribute is ignored
and all data are sent as bytes; however, pad byte(s) will be output when necessary
to achieve alignment on a word boundary. The pad character may be changed by
using the CONVERT attribute; see the ASSIGN statement for further information.

Y Like W, except that no pad bytes are output to achieve word alignment. If an
I/O path with the BYTE attribute is used to access a 16-bit interface, the BYTE
attribute is not overridden (as with the W specifier above). (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the
last output item.

% Ignored in OUTPUT images.

+ Changes the automatic EOL sequence that normally follows the last output item
to a single carriage-return. (Requires 10)

- Changes the automatic EOL sequence that normally follows the last output item
to a single line-feed. (Requires 10)

/ Outputs a carriage-return and a line-feed.

L Outputs the current end-of-line (EOL) sequence. The default EOL characters are
CR and LF; see ASSIGN for information on re-defining the EOL sequence. If the
destination is an I/O path name with the WORD attribute, a pad byte may be
sent after the EOL characters to achieve word alignment.

@ Outputs a form-feed.

486 Keyword Dictionary

END with OUTPUT ... USING
Using the optional secondary keyword END in an OUTPUT ... USING statement produces
results which differ from those in an OUTPUT statement without USING. Instead
of always suppressing the EOL sequence, the END keyword only suppresses the EOL
sequence when no data is output from the last output item. Thus, the # image specifier
generally controls the suppression of the otherwise automatic EOL sequence.

With HP-IB interfaces, END specifies an EOI signal to be sent with the last byte output.
However, no EOI is sent if no data is sent from the last output item or the EOL sequence
is suppressed. With Data Communications interfaces, END specifies an end-of-data
indication to be sent at the same times an EOI would be sent on HP-IB interfaces.

BASIC/UX Specifics
You can specify a window number or unnamed pipe as the output destination to
OUTPUT.

Keyword Dictionary 487

PARITY

See the ASSIGN statement.

488 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

PASS CONTROL

This statement is used to pass the capability of Active Controller to a specified HP-IB
device.

Item Description Range

I/O path name

device selector

name assigned to an HP-IB device any valid name

numeric expression, rounded to an integer must contain primary
address

Example Statements
PASS CONTROL 719
PASS CONTROL ~Controller_19

Semantics

(see Glossary)

Executing this statement first addresses the specified device to talk and then sends the
Take Control message (TCT), after which Attention is placed in the False state. The
computer then assumes the role of a bus device (a non-active controller).

The computer must currently be the active controller to execute this statement, and
primary addressing (but not multiple listeners) must be specified.

Keyword Dictionary 489

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
UNL UNL

Active Error
TAD Error

TAD
Controller TCT TCT

ATN ATN

Not Active Error
Controller

BASIC/UX Specifics
You cannot pass control on an interface containing a swap device or mounted file system.

490 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

PAUSE

This statement suspends program execution. (Also see TRACE PAUSE.)

Semantics
PAUSE suspends program execution before the next line is executed, until the I CONTINUE 1

key is pressed or CONT is executed. If the program is modified while paused, RUN must
be used to restart program execution.

When program execution resumes, the computer attempts to service any ON INTR
events that occurred while the program was paused. ON END, ON ERROR, or ON
TIMEOUT events generate errors if they occur while the program is paused. ON KEY
and ON KNOB events are ignored while the program is paused.

Pressing the I PAUSE 1 (or ~ on an ITF keyboard) key, or typing PAUSE and pressing
I EXECUTE I, I ENTER 1 or I Return 1 will suspend program execution at the end of the line
currently being executed.

Keyword Dictionary 491

PDIR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement specifies the angle with which IPLOT, RPLOT, POLYGON, POLYLINE,
and RECTANGLE output ar(' rotated.

Item

angle

Description

numeric expression in current units of angle;
Default = 0

Example Statements
PDIR 20
PDIR ACS(Side)

Semantics

Range

The rotation IS about the local origin of the RPLOT, POLYGON, POLYLINE or
RECTANGLE.

The angle is interpreted as counter-clockwise rotation from the X-axis.

492 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

PEN

This statement selects a pen value to be used for all subsequent lines. (For information
about PEN as a secondary keyword, see the AREA statement.)

Item Description Range

pen selector numeric expression, rounded to an integer -32 768 thru +32 767
(device dependent)

Example Statements
PEN 4
PEN Select
PEN Pen_number(I.J)

Semantics
For devices which support more than one line color (color CRT), or physical pen (external
hard copy plotters), this statement specifies the line color or physical pen to be used for
all subsequent lines until the execution of another PEN statement or until the execution
of a PLOT, IPLOT, RPLOT, or SYMBOL statement with an array argument which
changes the pen color (see Operation Selector 3 of these statements). The sign of the
pen selectors affects the drawing mode.

In color map mode, specifying PEN 14 actually means "write a 14 into the frame buffer."
The value of the frame buffer specifies the entry in the color map to be used, which in
turn describes the actual color to be used.

The PEN statement can also be used to specify that the current drawing mode is to erase
lines on all devices which support such an operation. This is specified with a negative pen
number. An alternate mode of operation which allows non-dominant and complementing
drawing may be accessed through the GESCAPE function.

Keyword Dictionary 493

When the PEN statement is executed, the pen used is mapped into the appropriate
range, retaining the sign. For example, if you specify pen +8 on a device whose pens
range from -7 through 7, it would actually use pen +1. The formulae used are as follows:

For monochromatic displays:
If pen selector > 0 then use PEN 1 (draw lines)
If pen selector = 0 then use PEN 0 (complement 1 lines)
If pen selector < 0 then use PEN -1 (erase lines)

For color displays not in COLOR MAP mode, and the HP 98627 A:
If pen selector> 0 then use PEN (pen selector - 1) MOD 7 + 1
If pen selector = 0 then use PEN 0 (complement)
If pen selector < 0 then use PEN - ((ABS(pen selector) - 1) MOD 7 + 1)

For color displays in COLOR MAP mode:
If pen selector>O then use PEN (pen selector - 1) MOD MaxPen + 1
If pen selector=O then use PEN 0
If pen selector<O then use PEN - ((ABS(pen selector) - 1) MOD MaxPen + 1)

Where MaxPen is the highest pen number (the lowest is 0). Four planes: MaxPen=15;
six planes: MaxPen=63; eight planes: MaxPen=255.

For an HPGL Plotter: use PEN pen selector

On an HPGL plotter, no checking is done to determine if the requested pen actually
exists. Pen 0 puts away any pen if the plotter supports such an operation.

1 "Complement" means to change the state of pixels; that is, to draw lines where there are none, and to
erase where lines already exist.

494 Keyword Dictionary

Non-Color-Map Mode
The value written into the frame buffer depends not only on what pen is being used, but
whether or not the computer is in color map mode. The colors for the default (non-color
map) mode are given because the color map cannot be changed in this mode.

The meanings of the different pen values are shown in the table below. The pen value
can cause either a 1 (draw), a 0 (erase), no change, or invert the value of each location
in the frame buffer.

Non-Color-Map Mode

Plane 1 Plane 2 Plane 3
Pen Color (Red) (Green) (Blue)

1 White 1 1 1

2 Red 1 a a
3 Yellow 1 1 a
4 Green a 1 a
5 Cyan a 1 1

6 Blue a a 1

7 Magenta 1 a 1

Drawing with the pen numbers indicated in the above table results in the frame buffer
planes being set to the indicated values. Drawing with the negatives of the pen numbers
while in normal pen mode causes the bits to be cleared where there are Is in the table.
Drawing with the negatives of the pen numbers while in alternate pen mode causes the
bits to be inverted where there are Is in the table. In either case, no change will take
place where there are Os in the table. Although complementing lines can be drawn,
complementing area fills cannot be executed.

Positive pen numbers in alternate drawing mode allows non-dominant drawing. (Non­
dominant drawing causes the values in the frame buffer to be inclusively ORed with the
value of the pen.) Pen 0 in normal mode complements. Pen 0 in alternate mode draws in
the background color. Since the table represents the computer in non-color map mode,
table entries for any additional frame buffer planes are all zeros.

Keyword Dictionary 495

Color Map Mode
When operating the color display in color map mode, pen colors can be redefined at will.
For this reason, no colors are mentioned in the following table. Unlike non-color-map
mode, the fourth bit in the frame buffer is used when in color map mode. Also, memory
planes 1, 2, and 3 are not associated with red, green, and blue.

Drawing with a pen merely puts the pen number into that pixel's location. The computer
looks into the corresponding entry in the color map to determine what the actual color
the pixel is to exhibit.

Pen Action Plane 1 Plane 2 Plane 3 Plane 4

0 Background 0 0 0 0

1 Draw Pen 1 1 0 0 0

2 Draw Pen 2 0 1 0 0

3 Draw Pen 3 1 1 0 0

4 Draw Pen 4 0 0 1 0

5 Draw Pen 5 1 0 1 0

6 Draw Pen 6 0 1 1 0

7 Draw Pen 7 1 1 1 0

8 Draw Pen 8 0 0 0 1

9 Draw Pen 9 1 0 0 1

10 Draw Pen 10 0 1 0 1

11 Draw Pen 11 1 1 0 1

12 Draw Pen 12 0 0 1 1

13 Draw Pen 13 1 0 1 1

14 Draw Pen 14 0 1 1 1

15 Draw Pen 15 1 1 1 1

496 Keyword Dictionary

Drawing with the negatives of the pen numbers while in normal pen mode causes the
bits to be cleared where there are Is in the table. Drawing with the negatives of the pen
numbers while in alternate pen mode causes the bits to be inverted where there are Is in
the table. In either case, no change will take place where there are Os in the table.

Pen 0 merely draws in the background color. Although complementing lines can be
drawn, complementing area fills cannot be executed.

Default Colors
The RGB and HSL values for the default pen colors while in color map mode are
shown below. These can be changed by the SET PEN statement. First, the RGB
(red/ green/blue) values:

Pen Color Red Green Blue

0 Black 0 0 0

1 White 1 1 1

2 Red 1 0 0

3 Yellow 1 1 0

4 Green 0 1 0

5 Cyan 0 1 1

6 Blue 0 0 1

7 Magenta 1 0 1

8 Black 0 0 0

9 Olive Green .80 .73 .20

10 Aqua .20 .67 .47

11 Royal Blue .53 .40 .67

12 Maroon .80 .27 .40

13 Brick Red 1.00 .40 .20

14 Orange 1.00 .47 0.00

15 Brown .87 .53 .27

Keyword Dictionary 497

The same default color map colors are represented below in their HSL (hue/saturation/
luminosity) representations:

Pen Color Hue Sat. Lum.

0 Black 0 0 0

1 White 0 0 1

2 Red 0 1 1

3 Yellow .17 1 1

4 Green .33 1 1

5 Cyan .50 1 1

6 Blue .67 1 1

7 Magenta .83 1 1

8 Black 0 0 0

9 Olive Green .15 .75 .80

10 Aqua .44 .75 .68

11 Royal Blue .75 .36 .64

12 Maroon .95 .65 .78

13 Brick Red .04 .80 1.00

14 Orange .08 1.00 1.00

15 Brown .08 .70 .85

498 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement lifts the pen on the current plotting device.

PENUP

Keyword Dictionary 499

PERMIT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
HFS
Yes
Yes
Yes

This statement modifies the owner, group, or public access permissions of an HFS file or
directory.

d ire~~~r: i ;~e~~ f ier "T""----------------------.,......L..-..j

literal form of HFS file or directory specifier:

Item

HFS file or
directory name

Description

HFS file or direc- string expression
tory specifier

directory path literal

file or directory literal
name

volume specifier literal

500 Keyword Dictionary

Range

(see drawing)

(see MASS STORAGE IS)

1 to 14 characters
(see Glossary)

(see MASS STORAGE IS)

Example Statements
PERMIT Dir_path$& File$& Volume$
PERMIT "/DirPath/HFSfile";OWNER:READ,WRITE; GROUP:READ
PERMIT "/DirPath/Dir";OTHER:SEARCH
PERMIT "File"; OWNER:READ,WRITE; OTHER:READ
PERMIT "Dir"; GROUP:READ; OTHER:
PERMIT "File"
PERMIT "Directory"

Semantics
The PERMIT statement is used to:

• change the permissions (access rights) of a file or directory on an HFS disc,

• permit or restrict access to files and directories by the file owner, a member of the
file-owner's group, or by all others.

Restricting access is useful, for instance, to prevent accidental purges of files or to prevent
others from reading or writing to a file.

You must be the current owner of the file or directory in order to execute PERMIT.

There are 9 bits of "permission" for HFS files.

OWNER GROUP OTHER

READ I WRITE I SEARCH READ I WRITE I SEARCH READ I WRITE I SEARCH

These bits are shown in the PERMISSION column of a CAT listing of the directory in
which the file or directory resides (R for READ; W for WRITE; X for SEARCH; - for "no
permission"):

FILE NUM REC MODIFIED
FILE NAME TYPE RECS LEN DATE TIME PERMISSION OWNER GROUP

File
Directory

8192
256

1 7-Nov-86 9:23 RW-RW-RW-
1 7-Nov-86 9:24 RWXRWXRWX

The default permission bits for directories are: RWXRWXRWX.
The default permission bits for files are: RW-RW-RW-.

18
18

9
9

Keyword Dictionary 501

There are three classes of users:

• OWNER -initially the person who created the file (ownership can be changed with
the CHOWN statement). All BASIC Workstation files are created with an owner
identifier of 18. BASIC/UX files default to the owner's user id.

• GROUP-initially the "group" to which the file's/directory's "owner" belongs (but
the group can be changed with the CHGRP statement). All BASIC Workstation
files are created with a group identifier of 9. BASIC/UX files default to the user's
group id.

• OTHER-all other users who are not the owner and are not in the same group as
the owner (known as "public" on the HP-UX system).

Each class of users has three types of permissions for accessing a file or directory:

• READ- -allows reading the file (such as with ASSIGN, ENTER, and GET).

• WRITE-allows a user to modify the file's contents (such as with OUTPUT or
RE-STORE).

• SEARCH-an operation on directories which allows you to include the directory in
a directory path (such as with CAT and MASS STORAGE IS).

When a user class is specified, all permission bits for that class are changed:

• If a permission is specified, then the corresponding permission bit is set;

• If a permission is omitted, the corresponding permission bit is cleared.

For example, executing:

PERMIT "Div";Other:

gives the following permission:

RWXRWX---

If no user class is specified, the default permissions for that file are restored.

For example executing:

PERMIT "File"

gives the following permission:

RW-RW-RW-

502 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

PI

This function returns 3.14159265358979, which is an approximate value for Jr.

--0-
Example Statements
Area=PI*Radius-2
PRINT X,X*2*PI

Keyword Dictionary 503

PIVOT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement specifies a rotation of coordinates which is applied to all subsequently
drawn lines.

Item Description Range

angle numeric expression in current units of angle (same as COS)

Example Statements
PIVOT 30
IF Special THEN PIVOT Radians

Semantics
The specified angle is interpreted according to the current angle mode (RAD or DEG).

The specified angular rotation is performed about the logical pen's position at the time
the PIVOT is executed. This rotation is applied only to lines drawn subsequent to the
PIVOT; logical pen movement is not affected by PIVOT. Consequently, PIVOT generally
causes the logical and physical pens to be left at different positions. Other operations
which cause similar effects are attempts to draw outside clip limits and direct HPGL
output to plotters.

504 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

PLOT

This statement moves the pen from the current pen position to the specified X and Y
coordinates. It can be used to move without drawing, or to draw a line, depending on
the pen control value.

Item

x coordinate

y coordinate

pen control

array name

Description

numeric expression, in current units

numeric expression, in current units

Range

numeric expression, rounded to an integer; -32768 thru +32 767
Default = 1 (down after move)

name of two-dimensional, two-column or any valid name
three-column numeric array.
(Requires GRAPHX)

Example Statements
PLOT X,Y,-1
PLOT -5,12
PLOT Shape(*) ,FILL ,EDGE

Keyword Dictionary 505

Semantics
Non-Array Parameters
The specified X and Y position information is interpreted according to the current unit­
of-measure. Lines are drawn using the current pen color and line type.

PLOT is affected by the PIVOT transformation.

The line is clipped at the current clipping boundary. If none of the line is inside the
current clip limits, the pen is not moved, but the logical pen position is updated.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting paint for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOIR.

Note 3: The starting paint for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POIR.

LDIR PDIR

Note 4

X

X

Note 2

The optional pen control parameter specifies the following plotting actions; the default
value is + 1 (down after move).

506 Keyword Dictionary

Pen Control Parameter
~--------~------------------~

Pen Control Resultant Action

- Even Pen up before move

-Odd Pen down before move

+ Even Pen up after move

+Odd Pen down after move

The above table is summed up by: even is up, odd is down, positive is after pen motion,
negative is before pen motion. Zero is considered positive.

Array Parameters
When using the PLOT statement with an array, either a two-column or a three-column
array may be used. If a two-column array is used, the third parameter is assumed to be
+1; pen down after move.

FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon.
The polygon begins at the first point on the sequence, includes each successive point,
and the final point is connected or closed back to the first point. A polygon is closed
when the end of the array is reached, or when the value in the third column is an even
number less than three, or in the range 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the PLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current
pen color. If polygon mode is entered from within the array, and the FILL/EDGE
directive for that series of polygons differs from the FILL/EDGE directive on the PLOT
statement itself, the directive in the array replaces the directive on the statement. In
other words, if a "start polygon mode" operation selector (a 6, 10, or 11) is encountered,
any current FILL/EDGE directive (whether specified by a keyword or an operation
selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the PLOT statement, FILL occurs first. If
neither one is specified, simple line drawing mode is assumed; that is, polygon closure
does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will
be edged, regardless of the directives on the statement.

Keyword Dictionary 507

When using a PLOT statement with an array~ the following table of operation selectors
applies. An operation selector is the value in the third column of a row of the array to
be plotted. The array must be a two-dimensional, two-column or three-column array. If
the third column exists, it will contain operation selectors which instruct the computer
to carry out certain operations. Polygons may be defined, edged (using the current pen),
filled (using the current fill color), pen and line type may be selected, and so forth. See
the following list.

Operation
Column 1 Column 2 Selector Meaning

X y -2 Pen up before moving

X y -1 Pen down before moving

X y 0 Pen up after moving (Same as +2)

X Y 1 Pen down after moving

X y 2 Pen up after moving

pen number ignored 3 Select pen

line type repeat value 4 Select line type

color ignored 5 Color value

ignored ignored 6 Start polygon mode with FILL

ignored ignored 7 End polygon mode

ignored ignored 8 End of data for array

ignored ignored 9 NOP (no operation)

ignored ignored 10 Start polygon mode with EDGE

ignored ignored 11 Start polygon mode with FILL and EDGE

ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value

red value green value 14 } Color
blue value ignored 15 Value

ignored ignored >15 Ignored

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array PLOT statement. Even is up, odd is down,
positive is after pen motion, negative is before pen motion. Zero is considered positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number
desired. The value in column two is ignored.

508 Keyword Dictionary

Selecting Line Types
An operation selector of 4 selects a line type. The line type (column one) selects the
pattern, and the repeat value (column two) is the length in GDUs that the line extends
before a single occurrence of the pattern is finished and it starts over. On the CRT,
the repeat value is evaluated and rounded down to the next multiple of 5, with 5 as the
minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This
works identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color
Operation selector 14 is used in conjunction with operation selector 15. Red and green
are specified in columns one and two, respectively, and column three has the value 14.
Following this row in the array (not necessarily immediately), is a row whose operation
selector in column three has the value of 15. The first column in that row contains the
blue value. These numbers range from 0 to 32767, where 0 is no color and 32767 is full
intensity. Operation selectors 14 and 15 together comprise the equivalent of an AREA
INTENSITY statement, which means it can be used on both a monochromatic and a
color CRT.

Operation selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through
a Red-Green-Blue (RGB) color model. The first column is encoded in the following
manner. There are three groups of five bits right-justified in the word; that is, the
most significant bit in the word is ignored. Each group of five bits contains a number
which determines the intensity of the corresponding color component, which ranges from
zero to sixteen. The value in each field will be sixteen minus the intensity of the color
component. For example, if the value in the first column of the array is zero, all three
five-bit values would thus be zero. Sixteen minus zero in all three cases would turn on all
three color components to full intensity, and the resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red, green,
and blue in the variables R, G, and B, respectively, the value for the first column in the
array could be defined thus:

Array(Row,l)=SHIFT(16*(1-B),-10)+SHIFT(16*(1-G) ,-5)+16 *(l-R)

If there is a pen color in the color map similar to that which you request here, that
non-dithered color will be used. If there is not a similar color, you will get a dithered
pattern.

Keyword Dictionary 509

Polygons
A six, ten, or eleven in the third column of the array begins a "polygon mode". If
the operation selector is 6, the polygon will be filled with the current fill color. If the
operation selector is la, the polygon will be edged with the current pen number and
line type. If the operation selector is 11, the polygon will be both filled and edged.
Many individual polygons can be filled without terminating the mode with an operation
selector 7. This can be done by specifying several series of draws separated by moves.
The first and second columns are ignored and should not contain the X and Y values of
the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a
polygon to be edged and/or filled and also terminates the polygon mode (entered by
operation selectors 6, la, or 11). The values in the first and second columns are ignored,
and the X and Y values of the last data point should not be in them. Edging and/or
filling of the most recent polygon will begin immediately upon encountering this operation
selector.

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits
cannot be changed from within the PLOT statement, so one probably would not have
more than one operation selector 12 in an array to PLOT, since the last FRAME will
overwrite all the previous ones.

Premature Termination
Operation selector 8 causes the PLOT statement to be terminated. The PLOT statement
will successfully terminate if the actual end of the array has been reached, so the use of
operation selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation
selector greater that fifteen is also ignored, but operation selector 9 is retained for
compatibility reasons. Operation selectors less than - 2 are not ignored. If the value
in the third column is less than zero. only evenness/oddness is considered.

510 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement selects a plotting device, file, or pipe.

PLOTTER IS

literal form of display/plotter specifier:

PLOTTER IS

Keyword Dictionary 511

Item

device selector

display /plotter
specifier

Description

numeric expression, rounded to an integer

string expression

color map display string expression
specifier

file specifier string expression

plot specifier string expression

window specifier numeric expression

xmin numeric expression;
Default = -392.75mm

xmax numeric expression:
Default = 392.7.5mm

ymin numeric expression;
Default = -251.5mm

ymax numeric expression;
Default = 251.5mm

directoty path literal

file name literal

Range

(see Glossary)

(see drawing)

INTERNAL or WINDOW

(see drawing)

HPGL

WINDOW

device dependent

device dependent

device dependent

device dependent

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

Example Statements
PLOTTER IS 3,1$
PLOTTER IS CRT,"INTERNAL";COLOR MAP
PLOTTER IS Dsg,"HPGL"
PLOTTER IS "Newfile","HPGL"
PLOTTER IS "/PL/PlotFile"

(see MASS STORAGE IS)

PLOTTER IS "PlotFile:REMOTE","HPGL",6.25,256.25,6.975,186.975
PLOTTER IS 601, "WINDOW" ; COLOR MAP (BASIC/UX only)

512 Keyword Dictionary

Semantics
Plotters
The hard clip limits of the plotter are read in when this statement is executed. Therefore,
the specified device must be capable of responding to this interrogation.

Files
This statement causes all subsequent plotter output to go to the specified file.

Xmin, Xmax, Ymin, Ymax are the hard clip limits of the plotter in millimeters.

This assumes 0.025 mm per plotter unit. The default size is for an HP 7580 or HP 7585
D-size drawing. See the plotter manual for more information on plotter limits.

The PLOTTER IS statement positions the file pointer to the beginning of the file.

The file is closed when another PLOTTER IS statement is executed or SCRATCH A,
GINIT or Reset is executed.

If you want to send HPGL commands to a file that is currently the PLOTTER IS device,
use the GSEND statement. (See the GSEND entry of this reference for details.)

An end-of-file error occurs when the end of a LIF file is reached.

SRM and HFS Files
In order to write to a PLOTTER IS file on an HFS volume, you need to have R (read) and
W (write) permission on the file, and X (search) permission on all superior directories.

In order to write to a PLOTTER IS file in an SRM volume, you need to have R (read)
and W (write) permissions on the file, as well as R permission on all superior directories.

No end-of-file errors occur on SRM or HFS files, because these files are extensible. That
is, if the data output to the file with this statement would overflow the file's space
allocation, the file is automatically extended provided the disc contains enough unused
storage space.

Keyword Dictionary 513

SRM Plotter Spoolers
If the specified file is in the SRM plotter spooler directory and the file contains data, then
the SRM system sends the data to the plotting device (when the file is closed) and then
purges the file. You may close the file by executing another PLOTTER IS statement,
GINIT, SCRATCH A or SCRATCH BIN, or by pressing I RESET I (I SHIFT H PAUSE I or
I Shift H Break I).

Displays
The statement PLOTTER IS CRT. "INTERNAL" is executed whenever a graphics statement
is executed which needs a plotter (see GINIT) and no plotter is active. The plotter
activated is the first device encountered in the following order:

1. The alpha display, if it has graphics capabilities

2. Internal 98542A, 98543A, 98544A, 98545A, 98547 A, 98548A, 98549A, 98550A,
98700. or 98720 at select code 6

3. Non-bit-mapped alpha display with graphics capabilities at select code 3 (BA­
SICjUX supports the 98546A compatibility interface only)

4. External 98700 or 98720 at select code> 7

5. 98627A at select code> 7 (BASICjWS only).

If the COLOR MAP option is specified and the plotting device has a color map, the
capability of changing the color map is enabled (see SET PEN). Also, the values written
into the frame buffer are different than they would be if color map mode was not enabled.

If the COLOR MAP option is not included and the plotting device is the Model 236
color display, the 4th memory plane is cleared (BASICjWS only).

514 Keyword Dictionary

Non-Color Map Mode
Executing a PLOTTER IS statement without the COLOR MAP keyword causes the
color map to be defined as follows, where 0 is zero intensity and 1 is full intensity. This
emulates the HP 98627 A non-color-mapped device on a color bit-mapped display.

Pen Color Red Green Blue

0 Complement 0 0 0

1 White 1 1 1

2 Red 1 0 0

3 Yellow 1 1 0

4 Green 0 1 0

5 Cyan 0 1 1

6 Blue 0 0 1

7 Magenta 1 0 1

On a display with bit-mapped alpha, the non-color map mode affects the ALPHA PEN,
PRINT PEN, KEY LABELS PEN, and KBD LINE PEN statements as follows: 8 is
black (the same as 0) and 9 through 15 are white (the same as 1).

The complementing cursor will be white on top of all colors except white, in which case
it will be black.

COLOR MAP
In the COLOR MAP mode, the color map is initialized so that the first eight colors are
the same as they were in the default mode, and the second eight colors simulate HP's
designer colors of plotter pen ink.

Although the pen numbers select the same color in color map mode as in non-color map
mode (for the first eight pens), the actual values written to the frame buffer are different.
This results from the different interpretation of the values in the frame buffer: in non­
color map mode, the values are RGB values; in color-map mode, the values are indices
into the color map. This means that a picture drawn in non-color map mode will change
colors if a PLOTTER IS with the COLOR MAP option is executed. The reverse is also
true.

On a console or a terminal, when the PLOTTER IS statement is executed, the color map is
initialized to a default state. If the graphics write-enable mask is left in the default mode,
the entire color map will be initialized as before. Otherwise, the following algorithm is
used: all color map entries whose binary representation has 1 's in non-graphics planes

Keyword Dictionary 515

will remain unchanged. This is done to insure that only pens dedicated to graphics are
initialized. For example, with a graphics write mask of 7 (binary 00000111), only pens
o through 7 are initialized. Higher numbered pens would remain unchanged since their
binary representation would have Is in non-graphics planes.

In windows, the color map is initialized to whatever the color map was when BASIC was
booted.

Display Specifiers
There are several values which can be used when specifying the display on which graphics
operations are done:

PLOTTER IS CRT, II INTERNAL II or
PLOTTER IS 1,IIINTERNALil

PLOTTER IS 3,IIINTERNALil

PLOTTER IS 6,IIINTERNALil

PLOTTER IS (device 8elector) , II INTERNAL II

PLOTTER IS (window id) , IIWINDOWII

(BASICjUX only)

516 Keyword Dictionary

This is the safest of the possibilities. "CRT"

is a built-in function which returns the
value 1, and the value 1 is interpreted by
the graphics system as "the default dis­
play." The default display may be an ex­
ternal display if no internal display exists.

This specifies a non-bit-mapped display if
there is one; otherwise, the action is equiv­
alent to "PLOTTER IS 1, II INTERNAL II " . Spec­
ifying a value of 3 makes sense for all Series
200 displays except the Model 237.

Always specifies a bit-mapped display. If
one is not found, an error results.

With the 98700 and 98720 displays, it is
possible to configure the display card so
that it is at an external select code. For
example, if you set the select code to 25,
you would say:

PLOTTER IS 25,IIINTERNALil

This specifier works only in a windowing
environment. A window id of 600 is equiv­
alent to PLOTTER IS CRT, II INTERNAL II in the
windowing environment.

PLOTTER IS < device selector>," 98627 A "I

(BASIC/WS only)
This specifies a color graphics display con­
nected through the 98627 A interface card.
This may have anyone of several options
specifying television format, etc. See the
following table.

liP 98627 A Dispiay Specifiers

Desired Display Format Display Specifier

Standard Graphics
512 by 390 pixels, "98627A" or
60 Hz, non-interlaced "98627A;US STO"

512 by 390 pixels, "98627A;EURO STO"
50 Hz, non-interlaced

High-Resolution Graphics
512 by 512 pixels "98627A;HI RES"
46.5 Hz, non-interlaced

TV Compatible Graphics
512 by 474 pixels, "98627A;US TV"
60 Hz, interlaced
(30 Hz refresh rate)

512 by 512 pixels, "98627A;EURO TV"
50 Hz, interlaced
(25 Hz refresh rate)

Default Pen Colors
The PLOTTER IS statement defines the color map to default values in a non-windowing
environment. These values are different depending on whether or not the COLOR MAP
option was selected. The two color plates on the next page show eight default colors
available with non-color map mode, and the sixteen default colors in color map mode.

1 PLOTTER IS <device selector>, "INTERNAL" is also accepted.

Keyword Dictionary 517

518 Keyword Dictionary

The values, both in RGB and HSL, of the sixteen default pen colors are given below:

Color Map Default Color Definitions (RG B)

Pen Color Red Green Blue

0 Black 0 0 0

1 White 1 1 1

2 Red 1 0 0

3 Yellow 1 1 0

4 Green 0 1 0

5 Cyan 0 1 1

6 Blue 0 0 1

7 Magenta 1 0 1

8 Black 0 0 0

9 Olive Green .80 .73 .20

10 Aqua .20 .67 .47

11 Royal Blue .53 .40 .67

12 Maroon .80 .27 .40

13 Brick Red 1.00 .40 .20

14 Orange 1.00 .47 0.00

15 Brown .87 .53 .27

Keyword Dictionary 519

The same default color map colors are represented below in their HSL (hue/saturation/
luminosity) representations:

Color Map Default Color Definitions (HSL)

Pen Color Hue Sat. Lum.

0 Black 0 0 0

1 White 0 0 1

2 Red 0 1 1

3 Yellow .17 1 1

4 Green .33 1 1

5 Cyan .50 1 1

6 Blue .67 1 1

7 Magenta .83 1 1

8 Black 0 0 0

9 Olive Green .15 .75 .80

10 Aqua .44 .75 .68

11 Royal Blue .75 .36 .64

12 Maroon .95 .65 .78

13 Brick Red .04 .80 1.00

14 Orange .08 1.00 1.00

15 Brown .08 .70 .85

Eight-plane machines have 256-entry color maps. In these machines, pens 16 through
255 are defined to a variety of shades. For exact values, interrogate the color map with
GESCAPE.

BASIC/UX Specifics
BASIC/UX treats output to a pipe as it would output to a file. The pipe must be
explicitly closed before any output becomes permanent (or takes place). Output to a
spooled device will not be sent to the spooler until the pipe has been closed. The closing of
pipes can be achieved with a subsequent PLOTTER IS, QUIT, or SCRATCH command.

520 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

POLYGON

This statement draws all or part of a closed regular polygon. The polygon can be filled
and/or edged.

Item

radius

total sides

sides to draw

Description Range

numeric expression, in current units

numeric expression, rounded to an integer. 3 thru 32767
Default = 60

numeric expression, rounded to an integer. 1 thru 32 767
Default = all sides

Example Statements
POLYGON l,5,5,4,FILL,EDGE
POLYGON 4

Keyword Dictionary 521

Semantics
The radius is the distance that the vertices of the polygon will be from the logical pen
position. The first vertex will be at a distance specified by "radius" in the direction of
the positive X-axis. Specifying a negative radius results in the figure being rotated 1800

•

POLYGON is affected by the PIVOT and the PDIR transformations.

The total sides and the number of sides drawn need not be the same. Thus:

POLYGON 1. 5 .8 • 5

will start to drawn an octagon whose vertices are 1.5 units from the current pen position,
but will only draw five sides of it before closing the polygon at the first point. If the
number of sides to draw is greater than the specified total sides, sides to draw is treated
as if it were equal to total sides.

POLYGON forces polygon closure, that is, the first vertex is connected to the last vertex,
so there is always an inside and an outside area. This is true even for the degenerate
case of drawing only one side of a polygon, in which case a single line results. This is
actually two lines, from the first point to the last point, and back to the first point.

Polygon Shape
The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anisotropic scaling causes the polygon to be distorted; stretched
or compressed along the axes. If a rotation transformation is in effect, the polygon will
be rotated first, then stretched or compressed along the unrotated axes.

The pen status also affects the final shape of a polygon if sides to draw is less than total
sides. If the pen is up at the time POLYGON is specified, the first vertex specified is
connected to the last vertex specified, not including the center of the polygon, which
is the current pen position. If the pen is down, however, the center of the polygon is
also included in it. If sides to draw is less than total sides, piece-of-pie shaped polygon
segments are created.

FILL and EDGE
FILL causes the interior of the polygon or polygon segment to be filled with the current
fill color as defined by AREA PEN, AREA COLOR, or AREA INTENSITY. EDGE
causes the edges of the polygon to be drawn using the current pen and line type. If both
FILL and EDGE are specified, the interior will be filled, then the edge will be drawn. If
neither FILL nor EDGE is specified, EDGE is assumed.

522 Keyword Dictionary

Polygons sent to an HPGL plotter are edged but not filled regardless of any FILL or
EDGE directives in the statement.

After POLYGON has executed, the pen is in the same position it was before the statement
was executed, and the pen is up. The polygon is clipped at the current clip limits.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOlA.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POIA.

LDIR PDIR

Note 4

X

X

Note 2

Keyword Dictionary 523

POLYLINE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement draws all or part of an open regular polygon.

Item

radius

total sides

sides to draw

Description Range

numeric expression, in current units

numeric expression, rounded to an integer. 3 thru 32767
Default = 60

numeric expression, rounded to an integer. 1 thru 32 767
Default = all sides

Example Statements
POLYLINE Radius,Sides,Sides_to_draw
POLYLINE 12,5

Semantics

WS,UX
GRAPHX

Yes
Yes
Yes

The radius is the distance that the vertices of the polygon will be from the current pen
position. The first vertex will be at a distance specified by "radius" in the direction of
the positive X-axis. Specifying a negative radius results in the figure being rotated 1800

•

POLYLINE is affected by the PIVOT and the PDIR transformations.

The total sides and the number of sides drawn need not be the same. Thus:

POLYLINE 1.5,8,5

will start to drawn an octagon whose vertices are 1.5 units from the current pen position,
but will only draw five sides of it. If the number of sides to draw is greater than the total
sides specified, it is treated as if it were equal to the total sides.

524 Keyword Dictionary

Shape of Perimeter
POLYLINE does not force polygon closure, that is, if sides to draw is less than total sides,
the first vertex is not connected to the last vertex, so there is no "inside" or "outside"
area.

The shape of the polygon is affected by the viewing transformation specified by SHOW or
WINDOW. Therefore, anistropic scaling causes the perimeter to be distorted; stretched
or compressed along the axes. If a rotation transformation is in effect, the polygon will
be rotated first, then stretched or compressed along the unrotated axes.

The pen status also affects the way a POLYLINE statement works. If the pen is up at
the time POLYLINE is specified, the first vertex is on the perimeter. If the pen is down,
the first point is the current pen position, which is connected to the first point on the
perimeter.

After POLYLINE has executed, the current pen position is in the same position it was
before the statement was executed, and the pen is up. The polygon is clipped at the
current clip limits.

Applic&ble Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOIR.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POIR.

LDIR PDIR

Note 4

X

X

Note 2

Keyword Dictionary 525

POS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This function returns the first position of a substring within a string.

Item

string searched

string searched
for

Description

string expression

string expression

Example Statements
Point=POS(Big$.Little$)
IF POS(A$.CHR$(10» THEN Line_end

Semantics

Range

WS,UX
None

Yes
Yes
Yes

If the value returned is greater than 0, it represents the position of the first character
of the string being searched for in the string being searched. If the value returned is 0,
the string being searched for does not exist in the string being searched (or the string
searched for is the null string).

Note that the position returned is the relative position within the string expression used
as the first argument. Thus, when a substring is searched, the position value refers to
that substring, not to the parent string from which the substring was taken.

5 26 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THE~l

WS,UX
10

Yes
Yes
Yes

PPOLL

This function returns a value representing eight status-bit messages of devices on the
HP-IB.

Item Description

I/O path name name assigned to an interface select code

Range

any valid name
(see ASSIGN)

interface select
code

numeric expression, rounded to an integer 7 thru 31

Example Statements
Stat=PPOLL(7)
IF BIT(PPOLL(CHpib).3) THEN Respond

Semantics
The computer must be the active controller to execute this function.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN & EOI ATN & EOI
(duration~25J.1.s) (duration~25J.1.s)

Active Read byte
Error Read byte

Error
Controller EOI EOI

Restore ATN to Restore ATN to
previous state previous state

Not Active
Error

Controller

Keyword Dictionary 527

PPOLL CONFIGURE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

This statement programs the logical sense and data bus line on which a specified device
responds to a parallel poll.

PPOLL CONFIGURE

Item

I/O path name

device selector

configure byte

Description Range

name assigned to a device or devices any valid name

numeric expression, rounded to an integer must contain a
primary address
(see Glossary)

numeric expression, rounded to an integer a thru 15

Example Statements
PPOLL CONFIGURE 711;2
PPOLL CONFIGURE ~Dvm;Response

528 Keyword Dictionary

Semantics
This statement assumes that the device's response is bus-programmable. The computer
must be the active controller to execute this statement.

The configure byte is coded. The three least significant bits determine the data bus line
for the response. The fourth bit determines the logical sense of the response.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
MTA MTA

Active
Error

UNL
Error

UNL
Controller LAG LAG

PPC PPC
PPE PPE

Not Active
Error

Controller

Keyword Dictionary 529

PPOLL RESPONSE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

This statement defines a response to be sent when an Active Controller performs a
Parallel Poll on an HP-IB Interface. The response indicates whether this computer does
or does not need service.

PPOLL RESPONSE

Item

I/O path name

interface select
code

I do/don't
need service

Examples

Description

name assigned to an interface select code

numeric expression, rounded to an integer

numeric expression, rounded to an integer

PPOLL RESPONSE ~Hp_ib;I_need_service
PPOLL RESPONSE Interface;O

530 Keyword Dictionary

Range

any valid name

7 thru 31

a or 1

Semantics
This statement defines the computer's response to a Parallel Poll (ATN & EOI) performed
by the current Active Controller on the specified HP-IB Interface. This statement only
sets up a potential response; no actual response is generated when the statement is
executed.

If the value of the "I do/don't need service" parameter is 0, the computer is directed to
place a logical false on the bit on which it has been defined to respond; this response will
tell the Active Controller that this (non-active) controller does not need service. Any
non-zero, positive value of this parameter (within the stated range) directs the computer
to set up a true response, which will tell a polling Active Controller that the computer
requires service.

The bit on which the computer is to place its Parallel Poll response is determined by the
value of the last "configure byte" written to CONTROL Register 5 of the corresponsing
HP-IB Interface. In general, this configure byte can be read from HP-IB STATUS
Register 7 by the service routine that responds to Parallel-Poll-Configuration-Change
interrupts (Bit 14 of the Interrupt Enable Register). This configure byte may then
be written into HP-IB CONTROL Register 5, and the response desired by the Active
Controller will be sent when a Parallel Poll is conducted.

This statement may be executed by either an Active Controller or a non-active controller.

Keyword Dictionary 531

PPOLL UNCONFIGURE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

This statement disables the parallel poll response of a specified device or devices.

PPOLL UNCONFIGURE

Item Description Range

I/O path name

device selector

name assigned to a device or devices any valid name

numeric expression, rounded to an integer (see Glossary)

Example Statements
PPOLL UNCONFIGURE 7
PPOLL UNCONFIGURE ~Plotter

532 Keyword Dictionary

Semantics
The computer must be the active controller to execute PPOLL UNCONFIGURE.

If multiple devices are specified by an I/O path name, all specified devices are deactivated
from parallel poll response. If the device selector or I/O path name refers only to an
interface select code, all devices on that interface are deactivated from parallel poll
response.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
MTA MTA

Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG

PPC PPC
PPD PPD

Not Active Error
Controller

Keyword Dictionary 533

PRINT

This statement sends items to the PRINTER IS device.

Expanded dia-gram:

Ul
E
Q) ...,

...,
C

L
a.

tab functIons not allowed with USING

534 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

traIling punctuation
not allowed with USING

WS,UX
None

Yes
Yes
Yes

literal form of image specifier

image
specifier list

image
specifier list

Item Description Range

image line
number

integer constant identifying an IMAGE 1 thru 32766
statement

image line label name identifying an IMAGE statement

image specifier string expression

string array name name of a string array

numeric array
name

column

CRT column

CRT row

image specifier
list

name of a numeric array

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

literal

integer constant

any valid name

(see drawing)

any valid name

any valid name

device dependent

1 thru screen width

1 thru alpha height

(see next drawing)

1 thru 32767 repeat factor

literal string constant composed of characters from quote mark not allowed
the keyboard, including those generated us-
ing the ANY CHAR key

Example Statements
PRINT "LINE";Number
PRINT Array(*);
PRINT TABXY(1.1).Header$.TABXY(Col.3).Message$
PRINT USING "5Z.DD";Money
PRINT USING Fmt3;Id.Item$.Kilograms/2.2

Keyword Dictionary 535

536 Keyword Dictionary

Radl;(SpeClf i e r cannot

be useo Wlt~Out a
dlglt soeClf1e

Semantics
Standard Numeric Format
The standard numeric format depends on the value of the number being displayed. If
the absolute value of the number is greater than or equal to 1E-4 and less than 1E+6, it
is rounded to 12 digits and displayed in floating point notation. If it is not within these
limits, it is displayed in scientific notation. The standard numeric format is used unless
USING is selected, and may be specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers separated by a semicolon.

Automatic End-Of-Line Sequence
After the print list is exhausted, an End-Of-Line (EOL) sequence is sent to the PRINTER
IS device, unless it is suppressed by trailing punctuation or a pound-sign (#) image
specifier. The printer width for EOL sequences generation is set to the screen width
(50, 80 or 128 characters) for CRTs and to 80 for external devices unless the WIDTH
attribute of the PRINTER IS statement was specified. WIDTH is off for files. This
"printer width exceeded" EOL is not suppressed by trailing punctuation, but can be
suppressed by the use of an image specifier.

Control Codes
Some ASCII control codes have a special effect in PRINT statements if the PRINTER
IS device is the CRT (device selector= 1):

Character Keystroke Name Action

CHR$(7) ICTRL~W bell Sounds the beeper

CHR$(8) ICTRLHKJ backspace Moves the print position back one
character.

CHR$(lO) I CTRL ~QJ line-feed Moves the print position down one
line.

CHR$(12) I CTRLH1J form-feed Prints two line-feeds, then advances
the CRT buffer enough lines to place
the next item at the top of the CRT.

CHR$(13) I CTR L ~[}.[) carriage-return Moves the print position to column
1.

The effect of ASCII control codes on a printer is device dependent. See your printer
manual to find which control codes are recognized by your printer and their effects.

Keyword Dictionary 537

CRT Enhancements
There are several character enhancements (such as inverse video and underlining)
available on some CRTs. They are accessed through characters with decimal values
above 127. For a list of the characters and their effects, see the "Display Enhancement
Characters" table in "Useful Tables" at the back of this book.

Arrays
Entire arrays may be printed using the asterisk specifier. Each element in an array is
treated as a separate item by the PRINT statement, as if the items were listed separately,
separated by the punctuation following the array specifier. If no punctation follows the
array specifier, a comma is assumed. COMPLEX array elements are treated as if the
real and imaginary parts are separated by a semicolon. The array is output in row major
order (rightmost subscript varies fastest).

PRINT Fields
If PRINT is used without USING, the punctuation following an item determines the
width of the item's print field; a semicolon selects the compact field, and a comma
selects the default print field. Any trailing punctation will suppress the automatic EOL
sequence, in addition to selecting the print field to be used for the print item preceding
it.

The compact field is slightly different for numeric and string items. Numeric items are
printed with one trailing blank. String items are printed with no leading or trailing
blanks.

The default print field prints items with trailing blanks to fill to the beginning of the
next 10-character field.

Numeric data is printed with one leading blank if the number is positive, or with a minus
sign if the number is negative. whether in compact or default field.

TAB
The TAB function is used to position the next character to be printed on a line. In the
TAB function, a column parameter less than one is treated as one. A column parameter
greater than zero is subjected to the following formula: TAB position = ((column - 1)
MOD width) + 1; where "width" is 50 for the Model 226 CRT, 128 for Model 237 and
other hi-resolution displays, and 80 for all other devices. If the TAB position evaluates
to a column number less than or equal to the number of characters printed since the
last EOL sequence, then an EOL sequence is printed, followed by (TAB position - 1)
blanks. If the TAB position evaluates to a column number greater than the number of
characters printed since the last EOL. sufficient blanks are printed to move to the TAB
position.

538 Keyword Dictionary

TABXY
The TABXY function provides X-Y character positioning on the CRT. It is ignored if a
device other than the CRT is the PRINTER IS device. TABXY(l,l) specifies the upper
left-hand corner of the CRT. If a negative value is provided for CRT row or CRT column,
it is an error. Any number greater than the screen width for CRT column is treated as
the last column on the screen. Any number greater than the height of the output area
for CRT row is treated as the last line of the output area. If 0 is provided for either
parameter, the current value of that parameter remains unchanged.

Display Type Output Area Height Display Width

226 18 50

216, 220, 236, 18 80
and 98546

98542 and 98543 19 80

237,98544, 41 128
98545, 98547,
98549, and
98700

98548 and 98550 44 128

PRINT With Using
When the computer executes a PRINT USING statement, it reads the image specifier,
acting on each field specifier (field specifiers are separated from each other by commas)
as it is encountered. If nothing is required from the print items, the field specifier is
acted upon without accessing the print list. When the field specifer requires characters,
it accesses the next item in the print list, using the entire item. Each element in an array
is considered a separate item.

The processing of image specifiers stops when there is no matching display item (and the
specifier requires a display item). If the image specifiers are exhausted before the display
items, they are reused, starting at the beginning.

COMPLEX values require two REAL image specifiers (Le. each COMPLEX value is
treated like two REAL values).

If a numeric item requires more decimal places to the left of the decimal point than are
provided by the field specifier, an error is generated. A minus sign takes a digit place
if M or S is not used, and can generate unexpected overflows of the image field. If the
number contains more digits to the right of the decimal point than are specified, it is
rounded to fit the specifier.

Keyword Dictionary 539

If a string is longer than the field specifier, it is truncated, and the right-most characters
are lost. If it is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on the PRINT statement are shown in the following table:

Image
Specifier

K

-K
H

-H

S

M

D

Z

*

R

E

ESZ

ESZZ

ESZZZ

A

Meaning

Compact field. Prints a number or string in standard form with no leading or
trailing blanks.

Same as K.

Similar to K, except the number is printed using the European number format
(comma radix). (Requires 10)

Same as H. (Requires 10)

Prints the number's sign (+ or -).

Prints the number's sign if negative, a blank if positive.

Prints one digit character. A leading zero is replaced by a blank. If the number is
negative and no sign image is specified, the minus sign will occupy a leading digit
position. If a sign is printed, it will "float" to the left of the left-most digit.

Same as D, except that leading zeros are printed.

Like Z, except that asterisks are printed instead of leading zeros. (Requires 10)

Prints a decimal-point radix indicator.

Prints a comma radix indicator (European radix). (Requires 10)

Prints an E, a sign, and a two-digit exponent.

Prints an E, a sign, and a one-digit exponent.

Same as E.

Prints an E, a sign, and a three-digit exponent.

Prints a string character. Trailing blanks are output if the number of characters
specified is greater than the number available in the corresponding string. If
the image specifier is exhausted before the corresponding string, the remaining
characters are ignored.

540 Keyword Dictionary

Image
Specifier Meaning

X Prints a blank.

literal Prints the characters contained in the literal.

B Prints the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an INTEGER alld the least-significaa"'1t byte is
sent. If the number is greater than 32767, then 255 is used; if the number is less
than -32768, then 0 is used.

W Prints two characters represented by the two bytes in a 16-bit, two's-complement
integer word. The corresponding numeric item is rounded to an INTEGER. If it
is greater than 32767, then 32767 is used; if it is less than -32768, then -32768
is used. On an 8-bit interface, the most-significant byte is sent first. On a 16-bit
interface, the two bytes are sent as one word in a single operation.

Y Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the
last print item.

% Ignored in PRINT images.

+ Changes the automatic EOL sequence that normally follows the last print item to
a single carriage-return. (Requires 10)

- Changes the automatic EOL sequence that normally follows the last print item to
a single line-feed. (Requires 10)

/ Sends a carriage-return and a line-feed to the PRINTER IS device.

L Sends the current EOL sequence to the PRINTER IS device. The default EOL
characters are CR and LF; see PRINTER IS for information on re-defining the
EOL sequence. If the destination is an I/O path name with the WORD attribute,
a pad byte may be sent after the EOL characters to achieve word alignment.

@ Sends a form-feed to the PRINTER IS device.

Keyword Dictionary 541

PRINTALL IS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement assigns a logging device, file or pipe for recording operator interaction
and troubleshooting messages.

542 Keyword Dictionary

Item

file specifier

device selector

end-of-line
characters

seconds

line width

Description Range

string expression

numeric expression, rounded to an integer; (see Glossary)
Default = CRT

string expression; 0 thru 8 characters
Default = CR/LF

numeric expression, rounded to the nearest 0.001 thru 32.767
0.001 seconds;
Default = 0

numeric expression, rounded to an integer; 1 thru 32 767
Default = infinity (see text)

Example Statements
PRINTALL IS 701
PRINTALL IS GpiO
PRINTALL IS 701;EOL CHR$(13) END,WIDTH 65
PRINTALL IS 614 ~BASIC/UX in X Windows only)
PRINTALL IS "debug.out" BASIC/UX only)
PRINTALL IS "I fold I pr -e -08 IIp'' BASIC/UX only)

Semantics
The printall device or file must be enabled by the I PRT ALL 1 key on the computer. The
I PRT ALL 1 key is a toggle action device or file, enabling and disabling the printall operation.
When the print all mode is enabled, all items generated by DISP, all operator input
followed by the I Return I, I ENTER I, I CONTINUE I, or I EXECUTE 1 key, and all error messages
from the computer are logged on the print all device or file. All TRACE activity is
logged on the printall device or file if tracing is enabled.

An asterisk (*) is displayed on the PRINTALL softkey label of models with ITF
keyboards, if print all mode is enabled.

At power-on and SCRATCH A, the default print all device is the CRT (select code 1).

Keyword Dictionary 543

The EOl Attribute (Requires 10)
The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the
following times: after the number of characters specified by line width and after each
line of text. Up to eight characters may be specified as the EOL characters; an error
is reported if the string contains more than eight characters. If END is included in the
EOL attribute, an interface-dependent END indication is sent with the last character of
the EOL sequence. If DELAY is included, the computer delays the specified number of
seconds (after sending the last character) before continuing. The default EOL sequence
consists of a carriage-return and a line-feed character with no END indication and no
delay period.

The WIDTH Attribute (Requires 10)
The WIDTH attribute specifies the maximum number of characters which will be sent
to the printing device or file before an EOL sequence is automatically sent. The EOL
characters are not counted as part of the line width. The default width for the Model
226 CRT is 50, Model 237 and other high-resolution displays is 128, and the default for
all other devices or file is 80. Specifying WIDTH OFF sets the width to infinity. If the
default is desired, it must be restored explicitly. If the USING clause is included in the
PRINT statement, the WIDTH attribute is ignored.

PRINTAll IS file
The file must be a BDAT or HP-UX file.

The PRINTALL IS file statement positions the file pointer to the beginning of the file.

The file is closed when another PRINTALL IS statement is executed and at SCRATCH
A.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON.

An end-of-file error occurs when the end of a LIF file is reached.

SRM and HFS Files
In order to write to a PRINTALL IS file on an HFS volume, you need to have R (read) and
W (write) permission on the file, and X (search) permission on all superior directories.

In order to write to a PRINTALL IS file on an SRM volume, you need to have READ and
WRITE capabilities on the immediately superior directory, as well as READ capabilities
on all other superior directories.

544 Keyword Dictionary

No end-of-file error occurs when writing to a file on an SRM or HFS volume because
these files are extensible. That is, if the data output to the file with this statement would
otherwise overflow the file's space allocation, the BASIC system automatically allocates
the additional space needed (provided the media contains enough unused storage space).

If the specified file is in the SRM printer spooler directory, is of type BDATI , and contains
data, then the SRM system sends the data to the printer (after the file is closed) and then
purges the file. You may close the file by executing another PRINTALL IS statement,
or a SCRATCH A or SCRATCH BIN command.

BASIC/UX Specifics
On HP-UX systems, the line-printer is a spooled device. Writing directly to the printer
as 701 may interfere with other spooled output. It is recommended that PRINTALL
IS output be directed to either a file or the line-printer spooler by, for example, the
statement:

PRINTALL IS "lIp"

BASIC lUX treats output to a pipe as it would output to a file. The pipe must be
explicitly closed before any output becomes permanent (or takes place). Output to a
spooled device will not be sent to the spooler until the pipe has been closed. The closing of
pipes can be achieved with a subsequent PRINTALL IS, QUIT, or SCRATCH command.

If PRINTALL IS device is a window and that window is destroyed (with DESTROY
WINDOW), PRINTALL IS is undefined and generates an error.

1 The SRM printer spooler will also spool ASCII files, which can be written by BASIC using OUTPUT,
SAVE or RE-SAVE.

Keyword Dictionary 545

PRINTER IS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement specifies the system printing device, file, or pipe.

literal form of file specifier·

HFS or SRM files only

546 Keyword Dictionary

WS,UX
None

Yes
Yes
Yes

Item

file specifier

device selector

end-of-line
characters

seconds

Description Range

string expression

numeric expression, rounded to an integer (see Glossary)

string expression; 0 thru 8 characters
Default = CR/LF

Ilumeric expre88ion, rounded to the neare8t 0.001 thru 32.767
0.001 seconds;
Default=O

line width numeric expression, rounded to an integer; 1 thru 32 767
Default = (see text)

directory path literal (see MASS STORAGE IS)

file name literal depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

Example Statements
PRINTER IS 701
PRINTER IS 614 (Windows only)
PRINTER IS Gpio
PRINTER IS "debug.out"
PRINTER IS 701;EOL CHR$(13) END,WIDTH 65
PRINTER IS "Myfile";WIDTH 80
PRINTER IS "Spooler:REMOTE"
PRINTER IS "My_dir/Temp_print";WIDTH 80
PRINTER IS " I fold I pr -e -081 lp" (BASIC/UX only)

(see MASS STORAGE IS)

Keyword Dictionary 547

Semantics
The system printing device or file receives all data sent by the PRINT statement and all
data sent by CAT, LIST, and XREF statements in which the destination is not explicitly
specified.

The default printing device is the CRT (select code 1) at power-on and after executing
SCRATCH A.

The EOl Attribute (Requires 10)
The EOL attribute re-defines the end-of-line (EOL) sequence, which is sent at the
following times: after the number of characters specified by line width, after each line
of text, and when an "L" specifier is used in a PRINT USING statement. Up to eight
characters may be specified as the EOL characters; an error is reported if the string
contains more than eight characters. If END is included in the EOL attribute, an
interface-dependent END indication is sent with the last character of the EOL sequence.
If DELAY is included, the computer delays the specified number of seconds (after sending
the last character) before continuing. The default EOL sequence consists of a carriage­
return and a line-feed character with no END indication and no delay period. END and
DELAY are ignored for files.

The WIDTH Attribute (Requires 10)
The WIDTH attribute specifies the maximum number of characters which will be sent to
the printing device before an EOL sequence is automatically sent. The EOL characters
are not counted as part of the line width. The default width for the Model 226 CRT
is 50, Model 237 and other high-resolution displays is 128, and the default for all other
devices is 80. Specifying WIDTH OFF sets the width to infinity. If the default is desired,
it must be restored explicitly. If the USING clause is included the PRINT statement,
the WIDTH attribute is ignored. Default WIDTH for files is OFF.

PRINTER IS file
The file must be a BDAT or HP-UX file.

The PRINTER IS file statement positions the file pointer to the beginning of the file.

The file is closed when another PRINTER IS statement is executed and at SCRATCH
A.

You can read the file with ENTER if it is ASSIGNed with FORMAT ON.

An end-of-file error occurs when the end of a LIF file is reached.

548 Keyword Dictionary

SRM and HFS Files
In order to write to a PRINTER IS file on an HFS volume, you need to have R (read) and
W (write) permission on the file, and X (search) permission on all superior directories.

In order to write to a PRINTER IS file on an SRM volume, you need to have READ and
WRITE capabilities on the immediately superior directory, as well as READ capabilities
on all other superior directories.

No end-of-file error occurs when writing to a file on an SRM or HFS volume because
these files are extensible. That is, if the data output to the file with this statement would
otherwise overflow the file's space allocation, the BASIC system automatically allocates
the additional space needed (provided the media contains enough unused storage space).

If the specified file is in the SRM printer spooler directory, is of type BDATI , and contains
data, then the SRM system sends the data to the printer (after the file is closed) and then
purges the file. You may close the file by executing another PRINTER IS statement, or
a SCRATCH A or SCRATCH BIN command.

BASIC/UX Specifics
On HP-UX systems, the line-printer is a spooled device. Writing directly to the printer
as 701 may interfere with other spooled output. It is recommended that printer output
be directed to either a file or the line-printer spooler by, for example, the statement:

PRINTER IS "lIp"

BASIC/UX treats output to a pipe as it would output to a file. The pipe must be
explicitly closed before any output becomes permanent (or takes place). Output to a
spooled device will not be sent to the spooler until the pipe has been closed. The closing of
pipes can be achieved with a subsequent PRINTER IS, QUIT, or SCRATCH command.

1 The SRM printer spooler will also spool ASCII files, which can be written by BASIC using OUTPUT,
SAVE or RE-SAVE.

Keyword Dictionary 549

PRINT LABEL

This statement gives a name to a mass storage volume.

Item Description

volume label name to be given to the volume

volume specifier string expression;
Default=the default mass storage unit

Example Statements
PRINT LABEL IVers3" TO I:INTERNAL.4.0"
PRINT LABEL Vol_labelS TO Vol_specifierS

Semantics

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

Range

WS,UX
MS
Yes
Yes
Yes

(see MASS STORAGE
IS)

The new name overwrites any previous name for the volume.

The volume label can be zero to six characters in length consisting of letters and numbers.
For maximum interchange, the characters should be limited to upper-case letters (A-Z)
and digits (0-9) with the first character being a letter.

You cannot use PRINT LABEL with SRM volumes; instead, you will have to name the
volume at the SRM console.

BASIC/UX Specifics
PRINT LABEL does not work in BASICjUX for HFS.

550 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

PRINT PEN

This statement sets the pen color to be used in the output area and display line of the
CRT.

(PRINT PEN Hpen value~

Item Description/Default

pen value numeric expression

Example Statements
PRINT PEN Pen_value
PRINT PEN 143
IF Col'or_blue THEN PRINT PEN 141

Range Restrictions

Keyword Dictionary 551

Semantics
This statement has no effect on monochrome displays.

The set of alpha colors for the Model 236C is given in the table below:

Value Result
< 16 The number is evaluated MOD

8 and resulting values produce
the following:

0- black
1 -- white
2 - red
3 - yellow
4 - green
5 - cyan
6 - blue
7 - magenta

16 to 135 Ignored
136 White
137 Red
138 Yellow
139 Green
140 Cyan
141 Blue
142 Magenta
143 Black
144 to 255 Ignored

For displays with bit-mapped alpha, PRINT PEN specifies the graphics pen to be used
for subsequent alpha output. The range of values allowed with this statement are 0
through 255; these values are treated as MOD 2A n where n is the number of display
planes.

PRINT PEN n and CONTROL CRT. 15; n set the value of CRT control register 15. These
statements have no effect on control registers 16 and 17 which are set using KEY LABELS

PEN and KBD LINE PEN. respectively.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 15.

PRIORITY

See the SYSTEM PRIORITY statement.

552 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

PROTECT

This statement specifies the protect code used on PROG, BDAT, and BIN files on LIF
volumes. It also specifies passwords used on all types of files and directories on SRM
volumes. (See PERMIT for access permissions of files and directories on HFS volumes.)

literal form of file speclfier:

literal form of directory specifier:

Keyword Dictionary 553

Item Description Range

LIF file specifier string expression (see "file specifier" drawing)

new LIF protect string expression; first two non-blank char- ">" not allowed
code acters are significant

SRM file specifier string expression

SRM directory string expression
specifier

new SRM pass- literal; first 16 characters are significant
word

directory path literal

file name literal

volume specifier literal

directory name literal

Example Statements
PROTECT Name$,Lif_pc$
PROTECT "George<xy>:INTERNAL","NEW"

PROTECT "dir:REMOTE",("mgr":MANAGER),("rw":READ,WRITE)
PROTECT "File<rw>",("rw":DELETE)

Semantics
LlF Files

(see "file specifier" drawing)

(see "directory specifier"
drawing)

any valid SRM password
(see Glossary)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

The protect code is necessary only for an operation which would write to the file or
PURGE the file. The file can always be read without using the protect code (by LOAD,
COPY, CAT "file name", etc.) The protect code is required for ASSIGN (and therefore
ENTER) since ASSIGN opens a file for both read and write.

Protect codes are "trimmed" before they are used. Therefore, leading and trailing blanks
are insignificant. Removing a protect code from a file is accomplished by assigning a
protect code that is the null string or contains all blanks.

554 Keyword Dictionary

SRM Files (Requires SRM and DCOMM)
PROTECT allows you to control access to SRM files and directories by protecting access
capabilities with password(s). Access capabilities are either public (available to all SRM
users) or password-protected (available only to users supplying the correct password with
the file or directory specifier).

The three access capabilities-MANAGER, READ and WRITE-are public until the
PROTECT statement associates a password with one or more of those capabilities.

Once the capability on a given file or directory is password-protected, the capability can
be exercised on the file or directory only if the correct password is included in the file
or directory specifier. For instance, if a file's READ capabilities are protected, any user
wishing to execute a command or statement that reads the file must supply a password
protecting the file's READ capability.

MANAGER Access Capability (SRM)
Public MANAGER capability allows any SRM user to PROTECT, PURGE or RENAME
a file or directory. Password-protected MANAGER capability provides READ and
WRITE, as well as MANAGER, access capabilities to users who know the password.

You must have MANAGER capabilities on a file or directory to PROTECT the access
capabilities on that file or directory. This includes adding, deleting and changing
passwords.

READ Access Capability (SRM)
READ capability on a file allows use of commands and statements that read the contents
of a file (for example: ENTER, LOAD, GET). READ capability on a directory allows
you to read the files in the directory (CAT), or to "pass through" a directory by including
the directory name (and password, if assigned) in a directory path.

WRITE Access Capability (SRM)
WRITE capability on a file allows use of commands and statements that write to the
file (for example: OUTPUT, RE-SAVE, RE-STORE). WRITE capability on a directory
allows use of commands that add or delete file names in the directory (for example:
SAVE, STORE, PURGE, CREATE, RENAME).

Keyword Dictionary 555

Use of PROTECT on SRM
Each PROTECT statement allows up to six password/capability combinations per
statement. The number of PROTECT statements that can be executed for each file
or directory is unlimited, however, as long as each password is unique.

Successive associations of capabilities with the same password are not cumulative. To
retain previous capability assignments for a file or directory, you must include those
assignments in subsequent PROTECT statements designating the same password for
that file or directory.

For example, say you protected the READ access capability on a file with the password
passme then wanted to change that assignment so that passme would protect both the
READ and WRITE access capabilities for that file. If you executed a second PROTECT
statement associating passme with the WRITE capability only, passme would no longer
protect the READ capability. Instead, you should specify the password and both the'
READ and WRITE capabilities in the second PROTECT statement.

To modify the access capabilities protected by a password, execute the PROTECT with
the existing password and the new password/capability pair(s).

The secondary keyword DELETE is used to delete existing password assignments for a
file or directory. To be effective, DELETE must be the only secondary keyword used
with a password/capability pair in the PROTECT statement. Otherwise, DELETE
is ignored. MANAGER capability is required to perform the DELETE. A DELETE
executed without MANAGER capability results in a protect code violation error.

556 Keyword Dictionary

PROUND
Supported On WS,UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This function returns the value of the argument rounded to the specified power-of-ten.

Item

argument

power of ten

Description

numeric expression

numeric expression, rounded to an integer

Example Statements
Money=PROUND(Result.-2)
PRINT PROUND(Quantity.Decimal_place)

Semantics
COMPLEX arguments are not allowed with this function.

Range

Keyword Dictionary 557

PRT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This INTEGER function returns 701, the default (factory set) device selector for an
external printer.

--®-
Example Statements
PRINTER IS PRT
OUTPUT PRT;A$

558 Keyword Dictionary

PURGE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement deletes a file from a directory. On hierarchical-directory volumes (such
as HFS and SRM), PURGE deletes an empty directory from its superior directory.

literal form of file specifier:

literal form of directory specifier:

Keyword Dictionary 559

Item

file specifier

directory
specifier

directory path

file name

Description

string expression

string expression

literal

literal

Range

(see drawing)

(see drawing)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

directory name literal

Example Statements
PURGE File_name$
PURGE "File"
PURGE "George<PC>"
PURGE "Dir_a<SRM_RW_pass>/File<MGR_pass>"
PURGE IDirl/Dir2/Dir3"

560 Keyword Dictionary

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

Semantics
Once a file is purged, you cannot access the information which was in the file. The
records of a purged file are returned to "available space."

An open file must be closed before it can be purged. Any file except a PRINTER IS file,
a PLOTTER IS file, or the current working directory can be closed by ASSIGN TO * (see
ASSIGN). All files except those opened with the PRINTER IS statement are closed by
I RESET I (I SHIFT H PAUSE lor I Shift H Break I). A PRINTER IS file can be closed by executing
a PRINTER IS to another device or file. A PLOTTER IS file can be closed by GINIT
or PLOTTER IS to another device or file. SCRATCH A also closes all files.

SRM and HFS Files and Directories
In order to PURGE an HFS or SRM directory or file, all of the following conditions must
be met:

• It must be closed. The current working directory is closed by an MSI to a different
directory. SCRATCH A closes all directories and files.

• It must be empty (directories only). That is, it must not contain any subordinate
files or directories.

• You must have the appropriate access capabilities .

• In order to PURGE a file or directory on an HFS volume, you need to have
W (write) and X (search) permission of the immediately superior directory,
as well as X (search) permission on all other superior directories. Note that
the ability to purge an HFS file is not determined by the file's permissions
but rather by the permissions set on the parent directory .

• In order to PURGE a file or directory on an SRM volume, you need to have
M (manager) access capability on file or directory, as as well as R (read) and
W (write) capabilities on the immediately superior directory and R capability
on all superior directories.

Keyword Dictionary 561

Notes

562 Keyword Dictionary

Supported On UX
Option Required n/ a
Keyboard Executable Yes
Programmable Yes
In an IF ~ ~ ~ THEN Yes

This statement cause BASIC to be exited.

Example Statements
QUIT
IF A$="DONE" THEN QUIT

Semantics

QUIT

When used within a program, this statement stops the program, and then BASIC/UX
exits.

When used as a keyboard command while a program is running, an error is given. You
must first stop (or pause) the program before using the QUIT command.

If a program is not running, then BASIC/UX is exited immediately.

Keyword Dictionary 563

Notes

564 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

RAD

This statement selects radians as the unit of measure for expressing angles.

@-i

Semantics
All functions which return an angle will return an angle in radians. All operations with
parameters representing angles will interpret the angle in radians. If no angle mode is
specified in a program, the default is radians (also see DEG).

A subprogram "inherits" the angle mode of the calling context. If the angle mode is
changed in a subprogram, the mode of the calling context is restored when execution
returns to the calling context.

Keyword Dictionary 565

RANDOMIZE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement selects a seed for the RND function.

(RANDOMIZE) If -I
~

Item Description Range

seed numeric expression, rounded to an integer; 1 thru 231 - 2
Default = pseudo-random

Example Statements
RANDOMIZE
RANDOMIZE Old_seed*PI

Semantics

WS,UX
None

Yes
Yes
Yes

The seed actually used by the random number generator depends on the absolute value
of the seed specified in the RANDOMIZE statement.

Absolute Value
of Seed Value Used

less than 1 1

1 thru 231 _2 INT(ABS(seed))

greater than 231 - 2 231 _2

The seed is reset to 37480660 by power-up, SCRATCH A, SCRATCH, and program
prerun.

566 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

RANK

This function returns the number of dimensions in an array. The value returned is an
INTEGER.

Item Description

array name name of an array

Example Statements
'IF RANK(A)=2 THEN PRINT "A is a matrix"
R=RANK(Array)

Range

any valid name

Keyword Dictionary 567

RATIO
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This function returns the ratio of the X hard clip limits to the Y hard clip limits for the
current PLOTTER IS device.

Example Statements
WINDOW O,10*RATIO,-10,10
Turn=l/RATIO

568 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

READ

This statement reads values from DATA statements and assigns them to variables.

Keyword Dictionary 569

Item Description Range

numeric name name of a numeric variable any valid name

string name

subscript

name of a string variable any valid name

numeric expression, rounded to an integer -32767 thru +32767
(see "array" in Glossary)

beginning numeric expression, rounded to an integer
position

ending position numeric expression, rounded to an integer

substring length numeric expression, rounded to an integer

Example Statements
READ Number,String$
READ Array(*)
READ Item(l,l),Item(2,l) ,Item(3,l)

Semantics

1 thru 32767 (see
"substring" in Glossary)

o thru 32767 (see
"substring" in Glossary)

o thru 32767 (see
"substring" in Glossary)

The numeric items stored in DATA statements are considered strings by the computer,
and are processed with a VAL function to read into numeric variables in a READ
statement. If they are not of the correct form, error 32 may result. Real DATA items will
be rounded into an INTEGER variable if they are within the INTEGER range (-32768
through 32 767). When a READ statement contains a COMPLEX variable, that variable
is satisfied with two REAL values. A string variable may read numeric items, as long as
it is dimensioned large enough to contain the characters.

The first READ statement in a context accesses the first item in the first DATA statement
in the context unless RESTORE has been used to specify a different DATA statement
as the starting point. Successive READ operations access following items, progressing
through DATA statements as necessary. Trying to READ past the end of the last DATA
statement results in error 36. The order of accessing DATA statements may be altered
by using the RESTORE statement.

An entire array can be specified by replacing the subscript list with an asterisk. The
array entries are made in row major order (right most subscript varies most rapidly).

570 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

READIO

This function reads the contents of the specified hardware register on the specified
interface, or reads the specified byte or word of memory.

Item Description Range

select code numeric expression, rounded to an integer 1 thru 31 and -31 thru -1;
±9826; 9827

register number numeric expression, rounded to an integer hardware-dependent
or
memory address

Note

Unexpected results may occur with select codes 9826 and 9827.

Example Statements
Upper_byte=READIO(GpiO,4)
PRINT "Register";I;"=";READIO(7,I)
Peek_byte=READIO(9826,Mem_addr)
Var_addr=READIO(9827,Integer_array)

Keyword Dictionary 571

Semantics
Positive select codes do a byte read (appropriate for most device registers); negative
select codes do a word read.

Reading Memory ("Peek")
Select code 9826 is used to read a byte of memory, while -9826 is used to read a word (16
bits) of memory. The second parameter specified in the READIO function is the memory
address of the byte to be read. This parameter is interpreted as a decimal address; for
instance, an address of 100 000 is 10 A 5, not 2 A 20.

Determining the Location of Numeric Variables
Select code 9827 is used to determine the memory address of a BASIC variable. You can
use this address, for instance, with WRITEIO to perform a JSR ("Jump to SubRoutine")
instruction in machine language, execute the instructions contained in the array, and then
return to BASIC. (See WRITEIO for details.)

BASIC/UX Specifics
You are restricted to memory access within your own process space.

572 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MS
Yes
Yes
Yes

This statement reads a volume label into a string variable.

Item

string variable

Description

string variable which returns the volume
name

volume specifier string expression;
Default = the default mass storage unit

Example Statements
READ LABEL Volume_nameS FROM I:INTERNAL.4.1"

READ LABEL

Range

(see MASS STORAGE
IS)

IF Inserted$=IYes" THEN READ LABEL Vol_labelS FROM Vol_specifierS

Semantics
A LIF or HFS volume label consists of a maximum of 6 characters. SRM volumes can
have labels up to 16 characters.

BASIC/UX Specifics
READ LABEL does not work for HFS in BASIC/UX.

Keyword Dictionary 573

READ LOCATOR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

This statement samples the locator device, without waiting for a digitizing operation.

Item

x coordinate
name

y coordinate
name

string name

Description

name of a numeric variable

name of a numeric variable

name of a string variable

Example Statements
READ LOCATOR X_pos,Y_pos
READ LOCATOR X,Y,Status$

Semantics

Range

any valid name

any valid name

any valid name

Executing this statement issues a request to the current locator device to return a set of
coordinates. The coordinates are sampled immediately, without waiting for a digitizing
action on the part of the user. GRAPHICS INPUT IS is used to establish the current
locator device. The returned coordinates are in the unit-of-measure currently defined
for the PLOTTER IS and GRAPHICS INPUT IS devices. The unit-of-measure may
be default units or those defined by either the WINDOW or SHOW statement. If an
INTEGER numeric variable is specified, and the value returned is out of range, Error 20
is reported.

574 Keyword Dictionary

The optional string variable is used to input the device status of the GRAPHICS INPUT
IS device. This status string contains eight bytes, defined as follows.

Byte

Meaning

Byte 1: Button status; This value represents the status of the digitizing
button on the locator. A "a" means the button is not depressed, and
a "I" means the button is depressed. This is an unprocessed value,
and a "I" does not necessarily represent successful digitization. If
the numeric value represented by this byte is used as the pen control
value for a PLOT statement, continuous digitizing will be copied to
the display device.

Bytes 2, 4, and 6: commas; used as delimiters.

Byte 3:

Byte 5:

Bytes 7 and 8:

Significance of digitized point; "a" indicates that the point is outside
the PI, P2limits; "I" indicates that the point is outside the viewport,
but inside the PI, P2 limits; "2" indicates that the point is inside
the current viewport limits.

Tracking status; "a" indicates off, "I" indicates on.

The number of the buttons which are currently down. To interpret
the ASCII number returned, change the number to its binary form
and look at each bit. If the bit is "1", the corresponding button is
down. If the bit is "0", the corresponding button is not down.

If the locator device (e.g., stylus or puck) goes out of proximity, a
"button 7" is indicated in the "button number" bytes. The number
will be exactly "64", regardless of whether any actual buttons are
being held down at the time. The HP 9111A always returns "00" in
bytes 7 and 8.

Keyword Dictionary 575

REAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This statement reserves storage for floating-point variables and arrays. (For information
about the REAL function, see the next entry in the keyword dictionary; for information
about using REAL as a secondary keyword, see the ALLOCATE, COM, DEF FN, or
SUB statements.)

Item Description

numeric name name of a numeric variable

lower bound integer constant;
Default = OPTION BASE value (0 or 1)

upper bound integer constant

Example Statements
REAL X,Y,Z
REAL Array(-128:127,15)
REAL A(512) BUFFER

576 Keyword Dictionary

Range

any valid name

-32767 thru +32767
(see "array" in Glossary)

-32 767 thru +32 767
(see" array" in Glossary)

Semantics
Each REAL variable or array element requires eight bytes of number storage. The
maximum number of subscripts in an array is six, and no dimension may have more than
32 767 elements.

The total number of REAL variables is limited by the fact that the maximum memory
usage for all variables-COMPLEX. INTEGER. REAL. and string-within anv context
is 224-1, or 16777215, bytes (or li~ited by the' amount of available memory, ~hichever
is less).

Declaring Buffers
To declare REAL variables to be buffers, each variable's name must be followed by the
keyword BUFFER; the designation BUFFER applies only to the variable which it follows.

Keyword Dictionary 577

REAL (function)
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

This function returns the real part of a COMPLEX number.

Item Description/Default

argument numeric expression

Example Statements
X=REAL(Complex_expr)
Y=REAL(Real_expr)
Z=REAL(Integer_expr)
Result=REAL(CMPLX(2.1,-8»

Semantics
An INTEGER or REAL argument is returned unchanged.

RECORDS
See the TRANSFER statement.

RECOVER
See the ON ... statements.

578 Keyword Dictionary

Range
Restrictions

any valid INTEGER,
REAL, or COMPLEX value

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

This statement draws a rectangle. It can be filled, edged, or both.

RECTANGLE

(RECTANGLE~~ ~.I
~. _______ ...J_~., EDGE

Item Description

width

height

numeric expression

numeric expression

Example Statements
RECTANGLE 4,6
RECTANGLE 3,-2,FILL,EDGE

Semantics

Range

The rectangle is drawn with dimensions specified as displacements from the current pen
position. Thus, both the width and the height may be negative.

Which corner of the rectangle is at the pen position at the end of the statement depends
upon the signs of the parameters:

Corner of
Sign Sign Rectangle
of X ofY at Pen Position

+ + Lower left

+ - Upper left

- + Lower right

- - Upper right

Keyword Dictionary 579

Shape of Rectangle
A rectangle's shape is affected by the current viewing transformation. If isotropic units
are in effect, the rectangle will be the expected shape, but if ansiotropic units are in
effect, the rectangle will be distorted: stretched or compressed along the axes.

RECTANGLE is affected by the PIVOT and PDIR transformations. If a rotation
transformation and anisotropic units are in effect, the rectangle is rotated first, then
stretched or compressed along the unrotated axes.

FILL and EDGE
FILL causes the rectangle to be filled with the current fill color, and EDGE causes the
perimeter to be drawn with the current pen color and line type. If both FILL and EDGE
are specified, the interior will be filled, then the edge will be drawn. If neither FILL nor
EDGE is specified, EDGE is assumed.

Rectangles sent to an HPGL plotter are edged but not filled regardless of any FILL or
EDGE directives on the statement.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LDIR.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by PDIR.

580 Keyword Dictionary

LDIR PDIR

Note 4

X

X

Note 2

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

REDIM

This statement changes the subscript range of previously dimensioned arrays.

Item

array name

lower bound

upper bound

Description Range

name of an array any valid name

numeric expression, rounded to an integer; -32 768 thru +32 767
Default=OPTION BASE value (0 or 1) (see "array" in glossary)

numeric expression, rounded to an integer -32768 thru +32767
(see "array" in glossary)

,Example Statements
REDIM Array(5)
REDIM B(3:5.6.-2:2)
REDIM Constants$(X.Y.Z)

Keyword Dictionary 581

Semantics
The following rules must be followed when redimensioning an array:

• The array to be redimensioned must have a currently dimensioned size known to the
context (i.e., it must have been implicitly or explicitly dimensioned, or be currently
allocated, or it must have been passed into the context.)

• You must retain the same number of dimensions as specified in the original
dimension statement.

• The redimensioned array cannot have .more elements than the array was originally
dimensioned to hold.

• You cannot change the maximum string length of string arrays.

REDIM does not change any values in the array, although their locations will probably
be different. The REDIM is performed left-to-right and if an error occurs, arrays to the
left of the array the error occurs in will be redimensioned while those to the right will
not be. If an array appears more than once in the REDIM, the right-most dimensions
will be in effect after the REDIM.

582 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This statement allows comments in a program.

®r!" ~,....------,~ '1
~ Y literal ~

Item Description

literal string constant composed of characters from
the keyboard, including those generated with
the ANY CHAR key

Example Program Lines
100 REM Program Title
190
200 IF BIT(Info,2) THEN Branch

Semantics

Test overrange bit

REM

Range

REM must be the first keyword on a program line. If you want to add comments to a
statement, an exclamation point must be used to mark the beginning of the comment.
If the first character in a program line is an exclamation point, the line is treated like a
REM statement and is not checked for syntax.

Keyword Dictionary 583

REMOTE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

This statement places HP-IB devices having remote/local capabilities into the remote
state.

Item

I/O path name

device selector

Description Range

name assigned to a device or devices any valid name
(see ASSIGN)

numeric expression, rounded to an integer (see Glossary)

Example Statements
REMOTE 712
REMOTE ClHpib

Semantics
If individual devices are not specified, the remote state for all devices on the bus having
remote/local capabilities is enabled. The bus configuration is unchanged, and the devices
switch to remote if and when they are addressed to listen. If primary addressing is used,
only the specified devices are put into the remote state.

When the computer is the system controller and is switched on, reset, or ABORT is
executed, bus devices are automatically enabled for the remote state and switch to remote
w hen they are addressed to listen.

The computer must be the system controller to execute this statement, and it must be
the active controller to place individual devices in the remote state.

584 Keyword Dictionary

Active
('""+,.,,llor

Not Active
Controller

Summary of Bus Actions

System Controller

Interface Select
Code Only

REN

REN

Primary Addressing
Specified

REN

ATN

MTA
UNL
LAG

Not System Controller

Interface Select I Primary Addressing
Code Only Specified

Error

Error

Keyword Dictionary 585

REN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
No
No

This command allows you to renumber all or a portion of the program currently in
memory.

Item

starting value

increment

beginning line
number

beginning line
label

ending line
number

ending line
label

Description Range

integer constant identifying a program line; 1 thru 32 766
Default = 10

integer constant; Default = 10 1 thru 32767

integer constant identifying program line 1 thru 32 766

name of a program line any valid name

integer constant identifying program line; 1 thru 32 766
Default = last program line

name of a program line any valid name

586 Keyword Dictionary

Example Statements
REN
REN 1000,5
REN 270,1 IN 260,Label1

Semantics
The program segment to be renumbered is delimited by the beginning line number or
label (or the first line in the program) and the ending line number or label (or the last line
in the program). The first line in the renumbered segment is given the specified starting
value, and subsequent line numbers are separated by the increment. If a renumbered
line is referenced by a statement (such as GOTO or GOSUB), those references will be
updated to reflect the new line numbers. Renumbering a paused program causes it to
move to the stopped state.

REN cannot be used to move lines. If renumbering would cause lines to overlap preceding
or following lines, an error occurs and no renumbering takes place.

If the highest line number resulting from the REN command exceeds 32 766, an error
message is displayed and no renumbering takes place. An error occurs if the beginning
line is after the ending line, or if one of line labels specified doesn't exist.

Keyword Dictionary 587

RENAME

This statement changes a file's or directoris name.

literal form of fIle specIfIer:

literal form of dIrectory specIfIer:

588 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
None

Yes
Yes
Yes

Item

old file specifier

new file specifier

old directory
specifier

new directory
specifier

directory path

file name

LIF protect code

SRM password

volume specifier

directory name

Description Range

string expression (see "file specifier" drawing)

string expression (see "file specifier" drawing)

string expression (see "directory specifier"
drawing)

string expression (see "directory specifier"
drawing)

literal (see MASS STORAGE IS)

literal depends on volume's
format:
10 characters for LIF;
14 characters for HFS (short
file name);
255 characters for HFS (long
file name);
16 characters for SRM;
(see Glossary)

literal; first two non-blank characters are > not allowed
significant

literal; first 16 non-blank characters are sig- > not allowed
nificant

literal (see MASS STORAGE IS)

literal depends on volume's
format:
10 characters for LIF;
14 characters for HFS (short
file name);
255 characters for HFS (long
file name);
16 characters for SRM;
(see Glossary)

Keyword Dictionary 589

Example Statements
RENAME "Old_name" TO "New_name"
RENAME File_name$kVol$ TO Temp$
RENAME "TEMP<pc>" TO "FINAL"

RENAME Dir$kFile$kVolume$
RENAME "/WORKSTATIONS/AUTOST" TO "old_autost"
RENAME "Dir1<SRM_RW_pass>/F1<MGR_pass>" TO "Dir2<RW_pass>/F1"
RENAME "Dir1/Dir2/MoveFile:REMOTE" TO "./Dir3/ToOtherDir"

Semantics
The new file or directory name must not duplicate the name of any other file in the
directory.

SRM files and directories must be closed before being renamed .

• Files are closed by ASSIGN ... TO * (explicitly closes an I/O path). All files
except those opened with the PRINTER IS statement are also closed by I RESET I
(I SH I FT H PAUSE I or I Shift H Break I). A PRINTER IS file can be closed by executing a
PRINTER IS to another device or file. A PLOTTER IS file can also be closed by
GINIT or PLOTTER IS to another device or file.

• The current working directory is closed by an MSI to a different directory.

SCRATCH A also closes all files and directories.

Because you cannot move a file from one mass storage volume to another with RENAME,
an error will be given if a volume specifier is included which is not the current location
of the file. (However, RENAME can perform limited file-move operations with SRM and
HFS files. See details below.)

LlF Protect Codes
A protected file retains its old protect code, which must be included in the old file
specifier.

HFS Permissions
In order to RENAME a file or directory on an HFS volume, you need to have W (write)
and X (search) permission of the immediately superior directory, as well as X (search)
permission on all other superior directories.

590 Keyword Dictionary

SRM Passwords
In order to RENAME an SRM file or directory, you need to have M (manager) access
capability on the file or directory, R (read) and W (write) capabilities on the immediately
superior directory, and R capabilities on all other superior directories.

Including an SRM password in the file or directory specifier does not protect it. You must
use PROTECT to assign passwords. You will not receive an error message for including
a password, but passwords in the "new fiie/directory name" portion of the RENAME
statement are ignored. However, any existing SRM password is retained by the renamed
file or directory.

SRM File and Directory Specifier Length
A maximum of nine names (files or directories) are allowed in both file or directory
specifiers in the RENAME statement. (The number of names in the old file/directory
specifier plus the number of names in the new file/directory specifier must not exceed
nine.) No more than six names are allowed in either file specifier individually.

Limited File Moves with SRM and HFS
With SRM and HFS, RENAME can be used to move files within the directory structure.
Directories cannot be moved with RENAME. Moving of files must occur within a single
volume. If you move a file with RENAME, the original file ("old file specifier") is purged.

BASIC/UX Specifics
RENAMEing across volumes is allowed.

REORDER

See the MAT REORDER statement.

Keyword Dictionary 591

REPEAT ... UNTIL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This construct defines a loop which is repeated until the boolean expression in the UNTIL
statement evaluates to be logically true (evaluates to non-zero).

(REPEAT)-I

boolean
expression

Item Description

boolean numeric expression; evaluated as true if non-
expression zero and false if zero

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested constructs(s).

Example Program Segments
530 REPEAT
540 PRINT Factor
550 Factor=Factor*l.l
560 UNTIL Factor>10

680 REPEAT
690 INPUT "Enter a positive number",Number
700 UNTIL Number>=O

592 Keyword Dictionary

Range

Semantics
The REPEAT ... UNTIL construct allows program execution dependent on the outcome
of a relational test performed at the end of the loop. Execution starts with the first
program line following the REPEAT statement, and continues to the UNTIL statement
where a relational test is performed. If the test is false a branch is made to the first
program line following the REPEAT statement.

When the relational test is true, program execution continues with the first program line
following the UNTIL statement.

Branching into a REPEAT ... UNTIL construct (via a GOTO) results in normal execution
up to the UNTIL statement, where the test is made. Execution will continue as if the
construct had been entered normally.

Nesting Constructs Property
REPEAT ... UNTIL constructs may be nested within other constructs provided the inner
construct begins and ends before the outer construct can end.

Keyword Dictionary 593

REQUEST
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

This statement is used by a non-active controller to send a Service Request (SRQ) on an
HP-IB interface.

Item Description Range

I/O path name

interface select
code

name assigned to an HP-IB interface any valid name

serial poll
response byte

numeric expression, rounded to an integer 7 thru 31

numeric expression, rounded to an integer 0 thru 255

Example Statements
REQUEST ~Hp_ib;Bit_6+Bit_O
REQUEST Isc;Response

Semantics
To request service, the value of the serial poll response must have bit 6 set; this bit
asserts the SRQ line. SRQ will remain set until either the Active Controller performs a
Serial Poll or until the computer executes another REQUEST with bit 6 clear.

Only the interface select code may be specified to receive the Request: if a device selector
that contains address information, or an I/O path assigned to a device selector with
address information is specified, an error results. An error will also results if the computer
is currently the Active Controller.

594 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

RES

This function returns the result of the last numeric computation which was executed
from the keyboard.

--@---

Example Statements
RES
3.5*RES+A

Keyword Dictionary 595

RE-SAVE
Supported On WS,UX
Option Required Edit
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This statement creates a specified ASCII file if it does not exist; otherwise, it re-writes a
specified ASCII or HP-UX file by copying program lines as strings into that file.

literal form of flle speclfler

'----y-----J
HFS Dr SRM files only

596 Keyword Dictionary

Item

file specifier

beginning line
number

Description

string expression

integer constant identifying program line;
Default = first program line

Range

(see drawing)

1 thru 32766

beginning line la- name of a program line any valid name
bel

ending line num- integer constant identifying a program line; 1 thru 32 766
ber Default = last program line

ending line label name of a program line

directory path literal

file name literal

any valid name

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

Example Statements
RE-SAVE "NailFile"
RE-SAVE Name$.l.Sort
RE-SAVE "Dir<SRM_RW_pass>/File<SRM_RW_pass>"

Semantics

(see MASS STORAGE IS)

An entire program can be saved, or the portion delimited by beginning and (if needed)
ending line labels or line numbers. If the file name already exists, the old file entry is
removed from the directory after the new file is successfully saved on the mass storage
media. Attempting to RE-SAVE any existing file that is not an ASCII or HP-UX text
file results in an error. (Note that if you RE-SAVE an existing HP-UX text file, a new
HP-UX file will be created; otherwise, an ASCII file will be ereated.)

If the file does not already exist, RE-SAVE performs the same action as SAVE.

Pressing I RESET I during a RE-SAVE operation results in the old file being retained.

If a specified line label does not exist, error 3 occurs. If a specified line number does not
exist, the program lines with numbers inside the range specified are saved. If the ending
line number is less than the beginning line number, error 41 occurs.

Note that both hard and symbolic links to a file are broken by RE-SAVE (see LINK).

Keyword Dictionary 597

HFS Permissions
In order to RE-SAVE a file on an HFS volume, you need to have W (write) permission on
the file (if one already exists), W (write) and X (search) permission of the immediately
superior directory, as well as X permission on all other superior directories. If a file
already exists, its permission bits will be preserved.

SRM Access Capabilities
In order to RE-SAVE an SRM file, you need to have R (read) and W (write) access
capabilities on the file (if one already exists), Rand W capabilities on the immediately
superior directory, and R capabilities on all other superior directories.

If the file exists and is read/write protected, you must specify the correct password with
RE-SAVE. If you specify the wrong password on a protected file, the system returns an
error. Any existing SRM password is retained by the re-saved file.

If the file does not exist, including an SRM password with the file name does not protect
the file. You must use PROTECT to assign a password. You will not receive an error
message for including a password, but a password in the file name portion of the RE­
SAVE statement will be ignored.

RE-SAVE on SRM Files
RE-SAVE opens the remote file in exclusive mode (denoted as LOCK in a CAT listing)
and enforces that status on the file until the RE-SAVE is complete. While in exclusive
mode, the file is inaccessible to all SRM workstations other than the one executing the
RE-SAVE.

Use of RE-SAVE on SRM and HFS may leave temporary files on the mass storage
media if I CLR I/O I (I Break I) or I RESET I (I SH I FT H PAUSE I or I Shift H Break I) is pressed or a
TIMEOUT occurs during the RE-SAVE. The file name of the temporary file is a 10-
character name (the first is an alpha character, others are digits) derived from the value
of the workstation's real-time clock when the interruption occurred. You may wish to
check the contents of any such file before purging.

BASIC/UX Specifics
The temporary file name begins with rmbt followed by a letter and the BASIC lUX process
id.

598 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

RESET

This statement resets an interface or the pointers of either a mass storage file or
buffer. (For information about RESET as a secondary keyword, see the SUSPEND
INTERACTIVE statement.)

Item

I/O path name

interface select
code

Description Range

name assigned to an interface, mass storage any valid name
file, or buffer

numeric expression, rounded to an integer 7 thru 31

Example Statements
RESET Hpib
RESET 20
RESET «2Buffer x

Keyword Dictionary 599

Semantics
A RESET directed to an interface initiates an interface-dependent action; see the
"Interface Registers" section for further details.

A RESET directed to a mass storage file resets the file pointer to the beginning of the
file.

A RESET directed to a buffer resets all registers to their initial values: the empty and
fill pointers are set to 1, and the current-number-of-bytes and all other registers are reset
to zero.

If a TRANSFER is currently being made to or from the specified resource, the computer
waits until the TRANSFER is complete before executing the RESET. If the TRANSFER
is not to be completed, an ABORTIO may be executed to halt the TRANSFER before
executing the RESET. If a busy buffer is specified in a RESET statement, error 612
results.

600 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

RESTORE

RESTORE specifies which DATA statement will be used by the next READ operation.

Item

line label

line number

Description Range

name of a program line any valid name

integer constant identifying a program line; 1 thru 32 766
Default = first DATA statement in context

Example Statements
RESTORE
RESTORE Third_array

Semantics
If a line is specified which does not contain a DATA statement, the computer uses the
first DATA statement after the specified line. RESTORE can only refer to lines within
the current context. An error results if the specified line does not exist.

Keyword Dictionary 601

RE-STORE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement creates a file and stores the program or typing-aid soft key definitions in
it.

literal form of fIle specIfier:

Item

file specifier

directory path

file name

Description

string expression

literal

literal

Range

(see drawing)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal (see MASS STORAGE IS)

602 Keyword Dictionary

Example Statements
RE-STORE Filename$&Volume$
RE-STORE "Prog_a"
RE-STORE "Dir<SRM_RW_pass>/Prog_z<SRM_RW_pass>"

RE-STORE KEY "Typing_aids"
RE-STORE KEY "KEYS:REMOTE"

Semantics
If the specified file already exists, the old file is removed from the directory after the new
file is successfully stored in the current mass storage device. If an old file does not exist,
a new one is created a.s if this were the STORE statement.

Pressing I Reset I during a RE-STORE operation causes the old file to be retained. (See
note below for effects on an SRM system.)

LlF Protect Codes
If the old file had a protect code, the same protect code must be used in the RE-STORE
operation. Attempting to RE-STORE a file which is the wrong type results in an error.
(RE-STORE creates a PROG file, and RE-STORE KEY creates a BDAT file.)

HFS Permissions
In order to RE-STORE a file on an HFS volume, you need to have W (write) permission
on the file (if one already exists), W (write) and X (search) permission of the immediately
superior directory, as well as X permission on all other superior directories. If the file
already exists, its permission bits will be preserved.

SRM Access Capabilities
In order to RE-STORE an SRM file, you need to have R (read) and W (write) access
capability on the file (if one already exists), R (read) and W (write) capabilities on the
immediately superior directory, and R capability on all other superior directories.

If the file exists and is read/write protected, you must specify the correct password with
RE-STORE. If you specify the wrong password on a protected file, the system returns
an error. Any existing SRM password is retained by the re-saved file.

If the file does not exist, including an SRM password with the file name does not protect
the file. You must use PROTECT to assign a password. You will not receive an error
message for including a password, but a password in the file name portion of the RE­
STORE statement will be ignored.

Keyword Dictionary 603

RE-STORE with SRM Volumes
RE-STORE opens an SRM file in exclusive mode (denoted as LOCK in a CAT listing)
and enforces that status on the file until the RE-STORE is complete. While in exclusive
mode, the file is inaccessible to all SRM workstations other than the one executing the
RE-STORE.

Use of RE-STORE on SRM or HFS may leave temporary files on the mass storage media
if I CLR I/O I (I Break I) or 1 RESET I is pressed or a TIMEOUT occurs during the RE-STORE.
The file name of the temporary file is a IO-character name (the first is an alpha character.
others are digits) derived from the value of the workstation's real-time clock when the
interruption occurred. You may wish to check the contents of any such file before purging.

BASIC/UX Specifics
The temporary file name begins with rmbt followed by a letter and the BASIC/UX process
in.

604 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
Tn an IF ... THEN

WS,UX
None
Yes!
Yes
Yes

RESUME INTERACTIVE

This statement enables the I EXECUTE I, I ENTER I, I Return I, I PAUSE I, I STOP I, I STEP I, I CLR I/O I,
I Break 1 and I RESET 1 keys after a SUSPEND INTERACTIVE statement.

(RESUME INTERACTIVE~

Example Statements
RESUME INTERACTIVE
IF Kbd_flag THEN RESUME INTERACTIVE

This statement is executable from the keyboard, but only while SUSPEND INTERACTIVE is not in
effect.

Keyword Dictionary 605

RETURN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This statement returns program execution to the line following the invoking GOSUB.
The keyword RETURN is also used in user-defined functions (see DEF FN).

See also ERROR RETURN.

(RETURN)-i

606 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

REV$

This function returns a string formed by reversing the sequence of characters III the
specified string.

Example Statements
Reverse$=REV$(lpalindrome")
Last_blank=LEN(Sentence$)-POS(REV$(Sentence$)," II)

Semantics
The REV$ function is useful when searching for the last occurrence of an item within a
string.

Keyword Dictionary 607

RND
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This function returns a pseudo-random number greater than 0 and less than 1.

--®--
Example Statements
Percent=RND*100
IF RND<.5 THEN Casel

Semantics

WS,UX
None

Yes
Yes
Yes

The random number returned is based on a seed set to 37 480 660 at power-on,
SCRATCH, SCRATCH A, or program prerun. Each succeeding use of RND returns
a random number which uses the previous random number as a seed. The seed can be
modified with the RANDOMIZE statement.

608 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

ROTATE

This function returns an integer which equals the value obtained by shifting the 16-bit
binary representation of the argument by the number of bit positions specified. The shift
is performed with wrap-around.

Item Description Range

argument numeric expression, rounded to an integer -32768 thru +32767

bit position
displacement

numeric expression, rounded to an integer -15 thru + 15

Example Statements
New_word=ROTATE(Old_word.2)
Q=ROTATE(Q.Places)

Semantics
The argument is converted into a 16-bit, two's-complement form. If the bit position
displacement is positive, the rotation is towards the least-significant bit. If the bit
position displacement is negative, the rotation is towards the most-significant bit. The
rotation is performed without changing the value of any variable in the argument.

Keyword Dictionary 609

RPLOT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement moves the pen from the current pen position to the point specified by
adding the x and y displacements to the local origin. It can be used to move with or
without drawing a line depending on the pen control parameter.

Item

x displacement

y displacement

pen control

array name

Description

numeric expression in current units

numeric expression in current units

numeric expression, rounded to an integer;
Default = 1

name of two-dimensional, two-column or
three-column numeric array.
Requires G RAPHX

Example Statements
RPLOT Rel_x.Rel_y.Pen_action
RPLOT 5.12
RPLOT Shape(*) .FILL.EDGE

610 Keyword Dictionary

Range

-32 768 thru +32767

any valid name

Semantics
This statement moves the pen to the specified X and Y coordinates relative to the local
coordinate origin. Both moves and draws may be generated, depending on the pen
control parameter. Lines are drawn using the curren pen color and line type.

The local coordinate origin is the logical pen position at the completion of one of
the following statements. The local coordinate origin is not changed by the RPLOT
statement.

AXES

IPLOT

SYMBOL

DRAW FRAME GINIT GRID IDRAW IMOVE

LABEL MOVE PLOT POLYGON POLYLINE RECTANGLE

The line is clipped at the current clipping boundary. RPLOT is affected by the PIVOT
and PDIR transformations. If none of the line is inside the current clip limits, the pen
is not moved, but the logical pen position is updated.

Non-Array Parameters
The specified X and Y displacements information is interpreted according to the current
unit-of-measure. Lines are drawn using the current pen color and line type.

If none of the line is inside the current clip limits, the pen is not moved, but the logical
pen position is updated.

Keyword Dictionary 611

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOlA.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POIA.

LDIR PDIR

Note 4

X

X

Note 2

The optional pen control parameter specifies the following plotting actions; the default
value is + 1 (down after move).

Pen Control Parameter

Pen Control Resultant Action

-Even Pen up before move

-Odd Pen 'down before move

+Even Pen up after move

+Odd Pen down after move

The above table is summed up by: even is up, odd is down, positive is after pen motion,
negative is before pen motion. Zero is considered positive.

Array Parameters
When using the RPLOT statement with an array, either a two-column or a three-column
array may be used. If a two-column array is used, the third parameter is assumed to be
+ 1; pen down after move.

612 Keyword Dictionary

FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon.
The polygon begins at the first point on the sequence, includes each successive point,
and the final point is connected or closed back to the first point. A polygon is closed
when the end of the array is reached, or when the value in the third column is an even
number less than three, or in the range 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the RPLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current
pen color. If polygon mode is entered from within the array, and the FILL/EDGE
directive for that series of polygons differs from the FILL/EDGE directive on the RPLOT
statement itself, the directive in the array replaces the directive on the statement. In
other words, if a "start polygon mode" operation selector (a 6, 10, or 11) is encountered,
any current FILL/EDGE directive (whether specified by a keyword or an operation
selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the RPLOT statement, FILL occurs first. If
neither one is specified, simple line drawing mode is assumed; that is, polygon closure
does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will
be edged, regardless of the directives on the statement.

When using a RPLOT statement with an array, the following table of operation selectors
applies. An operation selector is the value in the third column of a row of the array to
be plotted. The array must be a two-dimensional, two-column or three-column array. If
the third column exists, it will contain operation selectors which instruct the computer
to carry out certain operations. Polygons may be defined, edged (using the current pen),
filled (using the current fill color), pen and line type may be selected, and so forth.

Keyword Dictionary 613

Operation
Column 1 Column 2 Selector Meaning

X y -2 Pen up before moving

X y -1 Pen down before moving

X y 0 Pen up after moving (Same as +2)

X Y 1 Pen down after moving

X y 2 Pen up after moving

pen numb~r ignored 3 Select pen

line type repeat value 4 Select line type

color ignored 5 Color value

ignored ignored 6 Start polygon mode with FILL

ignored ignored 7 End polygon mode

ignored ignored 8 End of data for array

ignored ignored 9 NOP (no operation)

ignored ignored 10 Start polygon mode with EDGE

ignored ignored 11 Start polygon mode with FILL and EDGE

ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value

red value green value 14 } Color
blue value ignored 15 Value

ignored ignored >15 Ignored

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array RPLOT statement. Even is up, odd is
down, positive is after pen motion, negative is before pen motion. Zero is considered
positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number
desired. The value in column two is ignored.

614 Keyword Dictionary

Selecting Line Types
An operation selector of 4 selects a line type. The line type (column one) selects the
pattern, and the repeat value (column two) is the length in GDUs that the line extends
before a single occurrence of the pattern is finished and it starts over. On the CRT,
the repeat value is evaluated and rounded down to the next multiple of 5, with 5 as the
minimum.

Seiecting a Fiii Coior
Operation selector 13 selects a pen from the color map with which to do area fills. This
works identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color
Operation selector 14 is used in conjunction with operation selector 15. Red and green
are specified in columns one and two, respectively, and column three has the value 14.
Following this row in the array (not necessarily immediately), is a row whose operation
selector in column three has the value of 15. The first column in that row contains the
blue value. These numbers range from 0 to 32767, where 0 is no color and 32767 is full
intensity. Operation selectors 14 and 15 together comprise the equivalent of an AREA
INTENSITY statement, which means it can be used on both a monochromatic and a
color CRT.

OperatIon selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through
a Red-Green-Blue (RGB) color model. The first column is encoded in the following
manner. There are three groups of five bits right-justified in the word; that is, the
most significant bit in the word is ignored. Each group of five bits contains a number
which determines the intensity of the corresponding color component, which ranges from
zero to sixteen. The value in each field will be sixteen minus the intensity of the color
component. For example, if the value in the first column of the array is zero, all three
five-bit values would thus be zero. Sixteen minus zero in all three cases would turn on all
three color components to full intensity, and the resultant color would be a bright white.

Assuming you have the desired intensities (which range from 0 thru 1) for red, green,
and blue in the variables R, G, and B, respectively, the value for the first column in the
array could be defined thus:

Array(Row,l)=SHIFT(16*(1-B),-10)+SHIFT(16*(1-G) ,-5)+16*(1-R)

If there is a pen color in the color map similar to that which you request here, that
non-dithered color will be used. If there is not a similar color, you will get a dithered
pattern.

Keyword Dictionary 615

Polygons
A six, ten, or eleven in the third column of the array begins a "polygon mode". If
the operation selector is 6, the polygon will be filled with the current fill color. If the
operation selector is 10, the polygon will be edged with the current pen number and
line type. If the operation selector is 11, the polygon will be both filled and edged.
Many individual polygons can be filled without terminating the mode with an operation
selector 7. This can be done by specifying several series of draws separated by moves.
The first and second columns are ignored and should not contain the X and Y values of
the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a
polygon to be edged and/or filled and also terminates the polygon mode (entered by
operation selectors 6, 10, or 11). The values in the first and second columns are ignored,
and the X and Y values of the last data point should not be in them. Edging and/or
filling of the most recent polygon will begin immediately upon encountering this operation
selector.

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits
cannot be changed from within the RPLOT statement, so one probably would not have
more than one operation selector 12 in an array to RPLOT, since the last FRAME will
overwrite all the previous ones.

Premature Termination
Operation selector 8 causes the RPLOT statement to be terminated. The RPLOT
statement will successfully terminate if the actual end of the array has been reached,
so the use of operation selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation
selector greater that fifteen is also ignored, but operation selector 9 is retained for
compatibility reasons. Operation selectors less than - 2 are not ignored. If the value
in the third column is less than zero, only evenness/oddness is considered.

616 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the string repeated a given number of times.

Item

argument

repeat factor

Description Range

string expression

numeric expression, rounded to an integer 0 thru 32 767

Example Statements
PRINT RPT$(II*II.80)
Center$=RPT$(1I 1I.(Right-Left-Length)/2)

Semantics

RPT$

The value of the numeric expression is rounded to an integer. If the numeric expression
evaluates to a zero, a null string is returned.

An error will result if the numeric expression evaluates to a negative number or if the
string created by RPT$ contains more than 32 767 characters.

RSUM

See the MAT statement.

Keyword Dictionary 617

RUN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This command starts program execution at a specified line.

Item

line number

line label

Description Range

integer constant identifying a program line; 1 thru 32 766
Default = first program line

name of a program line any valid name

Example Statements
RUN 10
RUN Part2

618 Keyword Dictionary

WS,UX
None

Yes
No
No

Semantics
Pressing the I RUN I key is the same as executing RUN with no label or line number. RUN
is executed in two phases: prerun initialization and program execution.

The prerun phase consists of:

• Reserving memory space for variables specified in COM statements (both labeled
and blank). See COM for a description of when COM areas are initialized.

• Reserving memory space for variables specified by DIM, REAL, COMPLEX,
INTEGER, or implied in the main program segment. This does not include
variables used with ALLOCATE, which is done at run-time. Numeric variables
are initialized to 0; string variables are initialized to the null string.

• Checking for syntax errors which require more than one program line to detect.
Included in this are errors such as incorrect array references, and mismatched
parameter or COM lists.

If an error is detected during pre run phase, prerun halts and an error message is displayed
on the CRT.

After successful completion of pre run initialization, program execution begins with either
the lowest numbered program line or the line specified in the RUN command. If the line
number specified does not exist in the main program, execution begins at the next higher­
numbered line. An error results if there is no higher-numbered line available within the
main program, or if the specified line label cannot be found in the main program.

Keyword Dictionary 619

Notes

620 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF, , , THEN

WS,UX
EDIT

Yes
Yes
Yes

SAVE

This statement creates an ASCII file and copies program lines as strings into that file.

literal form of file specifier:

'-y-------'
HFS or SRM files only

Keyword Dictionary 621

Item

file specifier

beginning line
number

Description

string expression

integer constant identifying a program line;
Default = first program line

Range

(see drawing)

1 thru 32766

beginning line la- name of a program line any valid name
bel

ending line num- integer constant identifying a program line; 1 thru 32 766
ber Default = last program line

ending line label name of a program line

directory path literal

file name literal

any valid name

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

Example Statements
SAVE "WHALES"
SAVE "TEMP",l,Sort
SAVE "Dir<SRM_RW_pass>/File"
SAVE "Ascii_file:REMOTE"

Semantics

(see MASS STORAGE IS)

An entire program can be saved, or any portion delimited by the beginning and (if needed)
ending line numbers or labels. This statement is for creating new files. Attempting to
SAVE a file name that already exists causes error 54. If you need to replace an old file,
see RE-SAVE.

If a specified line label does not exist. error 3 occurs. If a specified line number does not
exist, the program lines with numbers inside the range specified are saved. If the ending
line number is less than the beginning line number, error 41 occurs. If no program lines
are in the specified range, error 46 occurs.

622 Keyword Dictionary

HFS Permissions and File Headers
In order to SAVE a file on an HFS volume, you need to have W (write) and X (search)
permission of the immediately superior directory, as well as X permission on all other
superior directories.

When a file is saved on an HFS volume, access permission bits are set to RW-RW-RW-.
You can modify the access permission bits with PERMIT if desired. For BASIC/UX,
these permissions are subject to alteration by the user's umask value, if set. See the
HP-UX Reference, umask(l).

On HFS volumes, SAVE creates an ASCII "file that contains a 512-byte header (at the
beginning of the file's contents). This header allows the BASIC system to recognize the
file as being an ASCII file. (The header is handled automatically by the BASIC system,
so you do not have to take any special actions.)

SRM Passwords and Exclusive Mode
In order to SAVE an SRM file, you need to have R (read) and W (write) capabilities on
the immediately superior directory, and R capabilities on all other superior directories.

Including an SRM password with the file name does not protect the file. You must use
PROTECT to assign passwords. You will not receive an error message for including a
password, but a password in the file name portion of the SAVE statement will be ignored.

SAVE opens an SRM file in exclusive mode (denoted as LOCK in a CAT listing) and
enforces that status on the file until the SAVE is complete. While in exclusive mode, the
file is inaccessible to all SRM workstations other than the one executing the SAVE.

Keyword Dictionary 623

sc
Supported On WS,UX
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This function returns the interface select code associated with an I/O path name.

Item Description

I/O path name name of a currently assigned I/O path

Example Statements
Isc=SC(IODevice)
Drive_isc=SC(IOFile)

Semantics

Range

any valid name

None
Yes
Yes
Yes

If the I/O path name is assigned to a device selector (or selectors) with primary and/or
secondary addressing, only the interface select code is returned. If the specified I/O path
name is assigned to a mass storage file, the interface select code of the drive is returned.
If the specified I/O path name is assigned to a buffer, a zero is returned.

If the I/O path name is not currently assigned to a resource, an error is reported.

BASIC/UX Specifics
If the I/O path name refers to a file on an HFS disk, SC returns the constant value 701.

624 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
No
No

This command erases all or selected portions of memory.

Item Description

key number integer constant

SCRATCH

Range

o thru 23

Keyword Dictionary 625

Example Statements
SCRATCH
SCRATCH A
SCRATCH ALL (BASICjUX only)
SCRATCH KEY
SCRATCH KEY 21
SCRATCH WINDOW (BASICjUX under X Windows only)

Semantics
The BASIC Workstation (BASICjWS) does not support the following secondary key­
words with the keyword SCRATCH:

ALL

B

COM

RECALL

W

WINDOW

Both full names and single character abbreviations for actions are accepted (BASICjUX
only).

SCRATCH clears the BASIC program and all variables not in COM. Key definitions are
left intact.

SCRATCH C clears all variables 1 including those in COM. The program and keys are
left intact.

SCRATCH R clears the I RECALL 1 key buffer.

To scratch a key, type SCRATCH KEY, followed by the key number, and press I EXECUTE I,
I ENTER I, or I Return I. Also, pressing a softkey after typing SCRATCH will cause SCRATCH KEY,

followed by the key number, to be displayed. When a key is specified, the definition for
that key only is cleared. When an individual key is not specified, all key definitions are
cleared. In either case, the program and all variables are left intact.

SCRATCH A clears the BASIC program memory, all the key definitions, and all variables
(including those in COM). Most internal parameters in the computer are reset by this
command. The clock is not reset and the recall buffer is not cleared. See the Master
Reset Table in the "Useful Tables" section in the back of this manual for details.

626 Keyword Dictionary 98619- 90052, rev: 1/89

SCRATCH BIN
SCRATCH BIN causes an extended SCRATCH A. It resets the computer to its power
up state. All programs, variables, and BINs are deleted from memory. The BIN which
contains the CRT driver for the current CRT is not deleted. Note that SCRATCH BIN
will not remove any binaries that reside in ROM.

SCRATCH BIN and SCRATCH B are not supported on BASICjUX.

SCRATCH A Effects on SRM and HFS Volumes
With SRM volumes, SCRATCH A releases the system resources allocated to the
workstation executing the SCRATCH A, making those resources available to other SRM
workstations. More specifically, SCRATCH A closes all files and directories, and resets
the workstation's working directory to the root directory of the default volume (the mass
storage volume from which the workstation booted). SCRATCH A also closes files and
directories with HFS volumes.

If the workstation has Boot ROM version 3.0 or A or later, and booted from the SRM,
SCRATCH A resets the working directory to the root of the default system volume.
If the workstation has an earlier version Boot ROM, SCRATCH A resets the working
directory to the device from which the workstation booted (for example, :INTERNAL if
the workstation booted from a built-in drive).

SCRATCH W or SCRATCH WINDOW (BASIC/UX only)
In a windowing environment, this command causes all created windows to be destroyed.
Note that this does not destroy the root BASIC window.

This command is only valid when running within a window system. When not in a
window system, this command causes an error.

SEC
See the SEND statement

Keyword Dictionary 627

SECURE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This command protects program lines so that they cannot be listed.

Item

beginning line
number

Description

integer constant;
Default = first line in program

ending line num- integer constant;
ber Default = beginning line number if specified,

or last line in program

Example Statements
SECURE
SECURE 45
SECURE 1. 100

Semantics

Range

WS,UX
PDEV

Yes
No
No

If no lines are specified, the entire program is secured. If one line number is specified,
only that line is secured. If two lines are specified, all lines between and including those
lines are secured.

Program lines which are secure are listed as an *. Only the line number is listed.

628 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
Tn an IF ... THEN

WS,UX
None

No
Yes
No

SELECT ... CASE

This construct provides conditional execution of one of several program segments.

(SELECT H expression H

(CASE ELSE ~

(END SELECT)-.i

Keyword Dictionary 629

Item Description

expression a numeric or string expression

match item a numeric or string expression; must be same
type as the SELECT expression

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct (s) .

Example Program Segments
650 SELECT Expression
660 CASE <0
670 PRINT "Negative number"
680 CASE ELSE
690 PRINT "Non-negative number"
700 END SELECT

750 SELECT Expression$
760 CASE "A" TO "Z"
770 PRINT "Uppercase alphabetic"
780 CASE ":",";",",","."
790 PRINT "Punctuation"
800 END SELECT

630 Keyword Dictionary

Range

Semantics
SELECT ... END SELECT is similar to the IF ... THEN ... ELSE ... END IF construct, but
allows several conditional program segments to be defined; however, only one segment
will be executed each time the construct is entered. Each segment starts after a CASE or
CASE ELSE statement and ends when the next program line is a CASE, CASE ELSE,
or END SELECT statement.

The SELECT statement specifies an expression, whose value is compared to the list
of values found in each CASE statement. When a match is found, the corresponding
program segment is executed. The remaining segments are skipped and execution
continues with the first program line following the END SELECT statement.

All CASE expressions must be of the same type, (either string or numeric) and must
agree in type with the corresponding SELECT statement expression.

The optional CASE ELSE statement defines a program segment to be executed when
the selected expression's value fails to match any CASE statement's list.

Branching into a SELECT ... END SELECT construct (via GOTO) results in normal
execution until a CASE or CASE ELSE statement is encountered. Execution then
branches to the first program line following the END SELECT statement.

Errors encountered in evaluating CASE statements will be reported as having occurred
in the corresponding SELECT statement.

Nesting Constructs Properly
SELECT ... END SELECT constructs may be nested, provided inner construct begins and
ends before the outer construct can end.

Keyword Dictionary 631

SEND

This statement sends messages to an HP-IB.

632 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

ASCII space
(space bar)

WS,UX
10

Yes
Yes
Yes

Item

interface select
code

I/O path name

primary address

secondary
address

Description

numeric expression, rounded to an integer

name assigned to an interface select code

numeric expression, rounded to an integer

I numeric expression, rounded to an integer

Example Statements
SEND 7;UNL MTA LISTEN 1 DATA "HELLO" END
SEND ~Hpib;UNL MLA TALK Device CMD 24+128

Semantics
CMD

Range

7 thru 31

any valid name
(see ASSIGN)

o thru 31

10 thru 31

The expressions following a CMD are sent with ATN true. The ASCII characters
representing the evaluated string expression are sent to the HP-IB. Numeric expressions
are rounded to an integer MOD 256. The resulting byte is sent to the HP-IB. CMD with
no items sets ATN true.

DATA
The expressions following DATA are sent with ATN false. The ASCII characters
representing the evaluated string expression are sent. Numeric expressions are rounded
to an integer MOD 256. The resulting byte is sent to the HP-IB. If END is added to the
data list, EOI is set true before sending the last byte. DATA with no items sets ATN
false without waiting to be addressed as a talker.

If the computer is active controller, and addressed as a talker, the data is sent
immediately. If the computer is not active controller, it waits until it is addressed t~
talk before sending the data.

TALK
TALK sets ATN true and sends the specified talk address. Only one primary address is
allowed for a single talker. An extended talker may be addressed by using SEC secondary
address after TALK. A TALK address of 31 is equivalent to UNT (untalk).

Keyword Dictionary 633

UNT
UNT sets ATN true and sends the untalk command. (There is no automatic untalk.) A
TALK address of 31 is equivalent to UNT.

LISTEN
LISTEN sets ATN true, sends one or more primary addresses, and addresses those devices
to listen. A LISTEN address of 31 is equivalent to UNL (unlisten).

UNL
UNL set ATN true and sends the unlisten command. (There is no automatic unlisten.)
A LISTEN address of 31 is equivalent to UNL.

SEC
SEC sets ATN true and sends one or more secondary addresses (commands).

MTA
MTA sets ATN true and sends the interface's talk address. It is equivalent to performing
a status sequence on the interface and then using the returned talk address with a
SEND .. TALK sequence.

MLA
MLA sets ATN true and sends the interface's listen address. It is equivalent to performing
a status sequence on the interface and then using the returned listen address with a
SEND .. LISTEN sequence.

Summary
The computer must be the active controller to execute SEND with CMD, TALK, UNT,
LISTEN, UNL, SEC, MTA and MLA.

The computer does not have to be the active controller to send DATA. DATA is sent
when the computer is addressed to talk.

The following table lists the HP-IB message mnemonics, descriptions of the messages,
and the secondary keywords required to send the messages. Any numeric values are
decimal.

634 Keyword Dictionary

Mnemonic Description Secondary Keyword and Value

DAB Data Byte DATA 0 thru DATA 255

DCL Device Clear CMD 20 or CMD 148

EOI End or Identify DATA (data) END (sends EOI with ATN false, which is the
END message; EOI with ATN true is the Identify message,
sent automatically with the PPOLL function)

GET Group Execute CMD 8 or CMD 136
Trigger

GTL Go To Local CMD lor CMD 129

IFC Interface Clear Not possible with SEND. An ABORT statement must be
used.

LAG Listen Address LISTEN 0 thru LISTEN 31; or
Group CMD 32 thru CMD 63

LLO Local Lockout CMD 17

MLA My Listen Address MLA

MTA My Talk Address MTA

PPC Parallel Poll Config- CMD 5 or CMD 133
ure

PPD Parallel Poll Disable PPC (CMD 5 or CMD 133), followed by CMD 112; or
CMD 240; or
SEC 16.

PPE Parallel Poll Enable PPC (CMD 5 or CMD 133), followed by CMD 96 thru
CMD 111; or
CMD 224 thru CMD 239; or
SEC 0 thru SEC 15 (SEC 0 allows a mask to be specified
by a numeric value)

PPU Parallel Poll Uncon- CMD 21 or CMD 149
figure

PPOLL Parallel Poll Not possible with SEND. PPOLL function must be used.

REN Remote Enable Not possible with SEND. REMOTE statement must be
used.

SDC Selected Device CMD 4 or CMD 132
Clear

Keyword Dictionary 635

Mnemonic Description Secondary Keyword and Value

SPD Serial Poll Disable CMD 25 or CMD 153

SPE Serial Poll Enable CMD 24 or CMD 152

TAD Talk Address TALK 0 thru TALK 31, or
CMD 64 thru CMD 95, or
CMD 192 thru CMD 223.

TCT Take Control CMD 9 or CMD 137

UNL Unlisten UNL, or LISTEN 31, or
CMD 63, or
CMD 19l.

UNT Untalk UNT, or TALK 31, or
CMD 95, or
CMD 223.

636 Keyword Dictionary

SEPARATE ALPHA FROM GRAPHICS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement is used to simulate the separate alpha and graphics rasters of Series 200
displays (not valid in a windowing environment, such as X Windows).

(SEPARATE ALPHA) I:: " '1
"-'\ FROM GRAPHICS Y

Example Statements
SEPARATE ALPHA

IF (S_300 AND Multi_plane) THEN SEPARATE ALPHA FROM GRAPHICS

Semantics'
This statement is used to set up the planes on multi-plane bit-mapped alpha displays for
independent use as separate alpha and graphics rasters. (This is the way that Series 200
displays work.) If the display is a monochrome, bit-mapped alpha display, an error will
be reported.

The statement performs the following actions:

1. PLOTTER IS CRT,"INTERNAL" is executed.

2. If the display is bit-mapped alpha with more than one plane (not monochrome),
then the following actions are taken:

a. The screen is cleared.

b. The alpha mask is set (see table below for details).

c. The alpha pen is set (see table below for details).

d. All appropriate color map entries are initialized (see table below for details).

e. The graphics mask is set so that it does not overlap with the alpha mask (the
complement of the alpha mask).

f. The alpha display is re-written in the new alpha color.

Keyword Dictionary 637

Display-Specific Parameters
Here are the values of parameters for the different types of Series 300 bit-mapped alpha
displays:

Number of
Planes Alpha Mask Color Map Graphics Mask

4 Plane 4 Pens a thru 7 have Planes 1 thru 3
(1000 base 2) normal default values; (0111 base 2)
Alpha pen is 8. pens 8 thru 15 are green. Graphics pens are

a thru 7.

6 Planes 5 & 6 Pens a thru 15 have Planes 1 thru 4
(11 0000 base 2) normal default values; (001111 base 2)
Alpha pens are pens 16 thru 31 are green; Graphics pens are

16, 32, and 48. pens 32 thru 47 are brown; a thru 15.
pens 48 thru 63 are cyan.

8 Planes 7 & 8 Pens a thru 63 have Planes 1 thru 6
(11000000 base 2) normal default values; (00111111 base 2)
Alpha pens are pens 64 thru 127 are green; Graphics pens are

64, 128, and 192. pens 128 thru 191 are brown; a thru 63.
pens 192 thru 255 are cyan.

Color map entries below the lowest alpha pen value have their default colors set by
PLOTTER IS CRT. "INTERNAL". Using a value in this range as an alpha pen will produce
transparent text (i.e., is equivalent to using pen 0). Setting up the color map as given
in the table causes the alpha text to be dominant over graphics images. If the COLOR
MAP option is used with PLOTTER IS, the SET PEN statement can still be used to
set all color map entries, not just those dedicated to graphics pens.

638 Keyword Dictionary

Here is a BASIC program that performs similar configuration of the planes of a 4-plane
display:

100 PLOTTER IS CRT, "INTERNAL";COLOR MAP
110 FOR 1=8 TO 15
120 SET PEN I INTENSITY 0,1,0
130 NEXT I
140 ALPHA PEN 0
150 ALPHA MASK 15
160 CLEAR SCREEN
170 ALPHA MASK 8
180 ALPHA PEN 8
190 INTEGER Gm(O)
200 Gm(O)=7
210 GESCAPE CRT,7,Gm(*)
220 ALPHA ON
230 GRAPHICS ON
240 PLOTTER IS CRT,"INTERNAL"
250 END

Select Series 300 display.

Set alpha colors (green).

Set alpha pen to black (temp.).
Enable all pl~~es (temp.).

Enable plane 4 for alpha.
Set alpha pen.
Declare array for GESCAPE.
Set bits 2,1,0, which select
graphics planes 3,2,1.

Display alpha plane.
Display graphics planes.
Return to non-color-map
mode.

Note that when using this operation with AREA COLOR and AREA INTENSITY, there
may be unexpected results. The algorithm that AREA COLOR and AREA INTENSITY
use to select graphics pens does not account for the graphics write-enable or display­
enable masks. If the pens selected by these statements have bits outside of the write­
enable mask, then the planes corresponding to these bits will not be affected. The result
is that the area fill colors will not be what is expected.

BASIC/UX Specifics
Does not work in a windowed environment.

Keyword Dictionary 639

SET ALPHA MASK
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

This statement is used to specify which plane(s) can be modified by alpha display
operations.

(SET ALPHA MASK H frame buf fer mask ~

Item Description/Default Range Restrictions

frame buffer
mask

numeric expression, rounded to an integer 1 thru 2'n - 1

Example Statements
SET ALPHA MASK Frame_mask
SET ALPHA MASK 3
SET ALPHA MASK IVAL (111100 11 .2)
IF Total_frames = 5 THEN SET ALPHA MASK 8

640 Keyword Dictionary

where n equals the
number of display planes

Semantics
This statement does not affect the operation of monochrome displays or the display of
the Model 236C.

Setting bit 0 of the frame buffer mask (i.e. SET ALPHA MASK 1) enables alpha write
permission to plane 1; setting bits 2 and 3 of the frame buffer mask (i.e. SET ALPHA
MASK 12) enables write permission to planes 3 and 4. The masks you can use to enable
write permissions range from 1 thru 2A n - 1 where n is the number of display planes
(e.g. the range of frame buffer masks for 4-planes would be 1 thru 15).

This statement affects any alpha display operation using the CRT (e.g. PRINT, DISP, CAT,

error messages, etc.).

The difference between this statement and SET DISPLAY MASK is SET ALPHA MASK
specifies which plane(s) can be modified by alpha operations (regardless of whether or
not it/they are displayed). SET DISPLAY MASK specifies the plane(s) that are to be
displayed (regardless of whether or not anything has been or can be written to it/them).

For further information on the alpha write-enable mask, read the section entitled "The
Alpha Mask" in the chapter "Using Graphics Effectively" found in the BASIC Graphics
Techniques manual.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 18.

For more information related to this statement, see SEPARATE ALPHA and MERGE
ALPHA which are found in this reference.

Keyword Dictionary 641

SET CHR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

This statement re-defines the bit-pattern used for character(s) in the current font (on
bit-mapped alpha/graphics displays only).

Item Description Range

first character numeric expression, rounded to an integer, 0 thru 256
which specifies the numeric code of the first
character to be re-defined

bit-pattern array name of an INTEGER array

Example Statements
ALLOCATE INTEGER Char_cell(l:CHRY.l:CHRX)
SET CHR Char_code.Char_cell(*)

ALLOCATE INTEGER Entire_font(l:Num_chars.l:CHRY.l:CHRX)
SET CHR O.Entire_font(*)

642 Keyword Dictionary

any valid name

Semantics
If the alpha display is not bit-mapped (that is, if the alpha is separate from the graphics
raster, and is generated by character-generator-ROM hardware), then attempting to
execute this statement results in error 880.

The "first character" parameter specifies the code of the first character whose bit-pattern
is to be re-defined.

The "bit-pattern array" contains the actual pixels that are to comprise the new character.
If the display is monochrome (single-plane), then only the low-order bit of each INTEGER
element is used. If the display is color (multi-plane), then as many bits are used as there
are planes in the display.

If the bit-pattern array parameter has only two dimensions, then only one character is
re-defined. The first dimension must have a range of exactly the value of CHRY for
this display; the second must have a range of CHRX. (Character cells are 16 rows by 8
columns for high-resolution bit-mapped alpha displays, and 15 rows by 12 columns for
medium-resolution bit-mapped alpha displays.)

If the bit-pattern array parameter has three dimensions, then multiple characters are
re-defined beginning at the character specified by the "first character" parameter, and
continuing until the array is exhausted (or character code 256 is reached, whichever
occurs first). The first dimension of this array corresponds to the character's code, the
second to the character-cell row, and the third to the character-cell column.

Note that character code 256 is the pattern which is exclusive OR'd with a character
to produce underlined characters on the display. [Underlining is enabled by writing a
CHR$(132) on the display, such as with PRINT, OUTPUT, or DISP.]

Restoring the Power-Up Default Font
If you want to return to using the default font, then execute this statement:

CONTROL CRT,21;1

Keyword Dictionary 643

SET DISPLAY MASK
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
CRTX

Yes
Yes
Yes

This statement is used to specify which plane(s) can be seen on the alpha display.

(SET DISPLAY MASK ~ frame buffer mask ~

Item Description/Default Range Restrictions

frame buffer
mask

numeric expression, rounded to an integer 0 thru 2·n - 1

Example Statements
SET DISPLAY MASK Frame_mask
SET DISPLAY MASK 3
SET DISPLAY MASK IVAL("1100".2)
IF Disp_frames = 5 THEN SET DISPLAY MASK 8

644 Keyword Dictionary

where n equals the
number of display planes

Semantics
This statement does not affect the operation of monochrome displays or the display of
the Model 236C.

Setting bit 0 of the frame buffer mask (i.e. SET DISPLAY MASK 1) enables the
displaying of alpha plane 1; setting bits 2 and 3 of the frame buffer mask (i.e. SET
DISPLAY MASK 12) enables displaying of alpha planes 3 and 4. The masks you can
use to enable display range from 0 thru 2A n - 1 where n is the number of display planes
(e.g. the range of frame buffer masks for 4-planes would be 0 thru 15).

This statement affects any display operation using the CRT (e.g. PRINT, DISP, CAT, error
messages, graphics, etc.).

The difference between this statement and SET ALPHA MASK is SET DISPLAY MASK
specifies the plane{s) that are to be displayed (regardless of whether or not anything has
been or can be written to it/them). SET ALPHA MASK specifies which plane(s) can be
modified by alpha operations (regardless of whether or not it/they are displayed).

For further information on the display-enable mask, read the section entitled "The
Alpha Mask" in the chapter "Using Graphics Effectively" found in the BASIC Graphics
Techniques manual.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 20.

For more information related to this statement, see ALPHA ON/OFF, GRAPHICS
ON/OFF, and GESCAPE found in this reference.

Keyword Dictionary 645

SET ECHO
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes

Yes

Yes

This statement sets an echo to the specified location on the current PLOTTER IS device.

(SET ECHOH x coordinate ~ y coordinate ~

Item Description

x coordinate

y coordinate

numeric expression in current units

numeric expression in current units

Example Statements
SET ECHO Xin,Yin
SET ECHO 1000,10000

Semantics

Range

If the current PLOTTER IS device is a CRT, a 9-by-9-dot cross-hair is displayed at
the specified coordinates if they are within the hard clip limits; the soft clip limits are
ignored. No echo is displayed if the coordinates are outside the hard clip limits.

If the current PLOTTER IS device is an HPGL plotter, the pen is raised and moved to
the specified coordinates if they are within the current clip limits. If the pen is inside
the clip limits and the new echo position is not, it moves towards the new echo position
but stops at the clip boundary. If the pen is outside the clip limits and the new echo
position is outside the clip limits, the pen moves along the nearest clip boundary.

SET ECHO is frequently used with the READ LOCATOR statement.

646 Keyword Dictionary

SET HIL MASK
Supported On UX
Option Required n/ a
Keyboard Executable Yes
Programmable Yes
Tn an IF ... THEN yp~

This statement enables the specified HIL devices for use by the BASIC system.

(SET HIL MASK >-1 address mask ~

Item Description Range

address mask the sum of 2 raised to the power of each of any even number
the addresses of the desired devices from 0 to 254

Example Statements
SET HIL MASK 16
SET HIL MASK 2-Mouse+2-Knobbox1+2-Buttonbox2

Keyword Dictionary 647

Semantics
The address mask provides the capability of specifying the HIL devices to be used by
the BASIC system. The most recent SET HIL MASK statement specifies the HIL
devices which are used in subsequent ON KNOB, ON CDIAL, ON HIL EXT, and
GRAPHICS INPUT IS statements. In addition, it specifies the devices which generate
arrow keystrokes during live keyboard and editing when the devices are not being used
by any of the above statements.

The value of the mask is obtained by raising 2 to the power of each of the addresses of
the desired device, and adding these values. Suppose you want to create a mask which
would only allow interrupts from HP-HIL devices at addresses 1 and 3. You would take
2 and raise if to the first power and add this result to 2 raised to the third power; the
final result is a mask value of 10.

At start-up time, the BASIC system attempts to use all available devices on the HP-HIL
link. You may then use this statement to select only those devices which you require and
relinquish the other devices for use by different HP-UX processes (e.g. other BASICjUX
processes). You should never specify the address of the HIL keyboard with this statement
since this interferes with the operation of BASIC and block all keyboard input.

Any HIL device which has been specified with this statement or which is not owned by
other processes can be identified using the HIL SEND statement as in:

HIL SEND 4; IDD

You should note that the X Windows environment monopolizes all HIL devices unless
explicitly specified not to do so. When a device is thus owned by X Windows, it is not
available for use by any BASIC processes running under the environment.

648 Keyword Dictionary

/
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

Yes
Yes
Yes

SET KEY

This statement programmatically re-defines typing-aid softkey(s).

string containing 1
typing-aid definition

string array of
softkey definition (s)

Item Description Range

key number numeric expression, rounded to an integer 0 thru 23

string containing 1 string expression any valid string expression
softkey definition

string array of soft- name of a string array
key definition(s)

Example Statements
SET KEY 1.0neKey$
SET KEY First_key.Several_keys$(*)

any valid name

Keyword Dictionary 649

Semantics
Typing-aid softkeys are used when typing text at the keyboard. They are active whenever
there is not a running program that has defined interrupt service routines for the keys
(with ON KEY).

The "first key" parameter indicates the first key to be re-defined.

The second parameter (the string expression or array) determines the number of keys to
be re-defined:

• If the parameter is a string expression (which includes a simple string variable) ~
then only one typing-aid soft key is re-defined .

• If the parameter is a string array, then several typing-aid softkeys may be re-defined.
Softkeys are re-defined in ascending order, one for each array element, until one of
the following conditions is true:

• the end of the array is reached

• the last softkey is re-defined

• typing-aid softkey memory overflows

For instance, if this parameter has a value of 5, and the string array has 3 elements,
thf'n softkeys [J[J. QKJ~ and [][] are re-defined. respectively.

In order to minimize the chances of typing-aid memory overflows, keys in the range to
be re-defined are first cleared and then the corresponding string values are placed into
typing-aid memory. For instance, if the "first key" parameter is 3 and the array contains
4 elements, then softkeys 3 through 6 are cleared, after which the string array elements
are placed into the corresponding softkeys. If typing-aid memory does overflow, the
remaining keys in the range remain undefined. For instance, in this example if a memory
overflow occurred while defining key 5, then keys 3 and 4 would have new definitions
while keys 5 and 6 would remain undefined.

If the string, or string array element, contains a null (0 length), string, the corresponding
typing-aid become8 undefined. U8e EDIT KEY or LOAD KEY to define null string
typing-aids.

650 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

SET LOCATOR

This statement specifies a new position for the locator of the current graphics input
device.

Item

x coordinate

y coordinate

Description Range

numeric expression specifying the x coordi- range of REAL
nate of the locator's new position in current
units

numeric expression specifying the y coordi- range of REAL
nate of the locator's new position in current
units

Example Statements
SET LOCATOR 12,95
SET LOCATOR X_cor,Y_cor

Semantics
If any of the coordinates are outside the device's limits, they are truncated to the nearest
boundary.

In order to change the X and Y coordinates of the locator, the graphics input device
must have a programmable locator position, (e.g. graphics input is from the keyboard
and other relative locators).

Keyword Dictionary 651

SET PEN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement defines the color for one or more entries in the color map.

Item Description

pen selector numeric expression, rounded to an integer

hue numeric expression

saturation numeric expression

luminosity numeric expression

HSL array name name of a two-dimensional, three-column
REAL array

red numeric expression

green numeric expression

blue numeric expression

RGB array name name of a two-dimensional, three-column
REAL array

Example Statements
SET PEN 3 COLOR Hue,Saturation,Luminosity
SET PEN Pen_number INTENSITY Color_map_array(*)
SET PEN 0 INTENSITY 4/15,4/15,4/15

652 Keyword Dictionary

Range

o thru 32767

o thru 1

o thru 1

o thru 1

any valid name

o thru 1

o thru 1

o thru 1

any valid name

WS,UX
GRAPHX

Yes
Yes
Yes

Semantics
This statement defines the color for one or more entries in the color map. Either the
HSL (hue/saturation/luminosity) color model or the RGB (red/green/blue) color model
may be used. This statement is ignored for non-color mapped devices and color mapped
devices in non-color map mode.

For both SET PEN COLOR and SET PEN INTENSITY, the pen Relector specifies the
first color map entry to be defined. If individual RGB or HSL values are given, that
entry in the color map is the only one defined. If an array is specified, the color map is
redefined, starting at the specified pen, and continuing until either the highest-numbered
entry in the color map is redefined or the source array is exhausted.

Specifying color with the SET PEN and AREA PEN statements (resulting in non­
dithered color) results in a much more accurate representation of the desired color than
specifying the color with an AREA statement. Compare the five color plates shown in
this entry with the corresponding plates in the AREA statement.

Note

The following color plates do not exactly represent what your eye
would see on the CRT. The reason for this is that photographic film
cannot capture all the colors a CRT can produce, and the printing
process cannot reproduce all the colors that film can capture. The
five following color plates are multiple exposures.

Keyword Dictionary 653

SET PEN COLOR
The hue value specifies the color. The hue ranges from zero to one 1 in a circular manneL
with a value of zero resulting in the same hue as a value of one. The hue, as it goes from
zero to one 1 proceeds through red, orange 1 yellow 1 green 1 cyan, blue, magenta 1 and back
to red.

The saturation value, classically defined 1 is the inverse of the amount of white added to
a hue. What this means is that saturation specifies the amount of hue to be mixed with
white. As saturation goes from zero to one 1 there is 0% to 100% of pure hue added to
white. Thus 1 a saturation of zero results in a graYl dependent only upon the luminosity;
hue makes no difference.

The luminosity value specifies the brightness per unit area of the color. A luminosity
of zero results in black 1 regardless of hue or saturation; if there is no color 1 it makes no
difference which color it is that is not there.

The first color plate on the following page shows the changes brought about by varying
one HSL parameter at a time. The bottom bar shows that when saturation (the amount
of color) is zero 1 hue makes no difference 1 and varying luminosity results in a gray scale.

The second color wheel on the following page represents the fully saturated, fully
luminous colors selected as the hue value goes from 0 through 1. Any value between
zero and one 1 inclusive 1 can be chosen to select color 1 but the resolution (the amount the
value can change before the color on the screen changes) depends on the value of hue, as
well as the other two parameters.

654 Keyword Dictionary

HSL Color Wheel

Keyword Dictionary 655

The next color plate shows the effect that varying saturation and luminosity has on hue.
Each of the small color wheels is a miniature version of the large one above, except it
has fewer colors.

Effects of Saturation and Luminosity on Color

SET PEN INTENSITY
The red, green, and blue values specify the intensities of the red, green, and blue colors
displayed on the screen.

The first color plate demonstrates the effect of varying the intensity of one color
component while the other two remain constant.

The second plate on the following page shows combinations of red, green and blue.
The values are represented in fifteenths: 0 fifteenths, 5 fifteenths, 10 fifteenths, and 15
fifteenths-every fifth value. Fifteenths are the units. Thus, zero fifteenths through
fifteen fifteenths made a total of sixteen levels. the values for each color component are
represented in that color.

656 Keyword Dictionary

RG B Addition: One Color at a Time

Keyword Dictionary 657

BASIC/UX Specifics
Dithering on the HP 2397 terminal assumes that the hardware color map contains power­
on color assignments. However, these do not correspond to the standard BASIC color
map. To make dithering results accurate on the HP 2397, the color map must be set to
the following with SET PEN:

Pen R G B

0 0.0 0.0 0.0

1 1.0 0.0 0.0

2 0.0 1.0 0.0

3 1.0 1.0 0.0

4 0.0 0.0 1.0

5 1.0 0.0 1.0

6 0.0 1.0 1.0

7 1.0 1.0 1.0

658 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

SET TIME

This statement resets the time-of-day given by the real-time clock.

Item Description Range

seconds numeric expression, rounded to the nearest 0 thru 86399.99
hundredth

Example Statements
SET TIME 0
SET TIME Hours*3600+Minutes*60
SET TIME TIME("8:37:30")
SET TIME (BASI C lUX only)

Semantics
SET TIME changes only the time within the current day, not the date. The new clock
setting is equivalent to (TIMEDATE DIV 86400) x86 400 plus the specified setting.

BASIC/UX Specifics
This statement does not reset the HP-UX clock, even if the user is super-user. Instead
it resets the clock which BASIC lUX keeps for itself.

SET TIME without a parameter resynchronizes the time with the HP-UX clock. This
does not affect the date nor the timezone. If the timezone is subsequently resynchronized
with HP-UX (via TIME ZONE IS), then the time will change accordingly. The proper
way to resynchronize both the time and timezone is to do the timezone first as in:

TIMEZONE IS
SET TIME

Keyword Dictionary 659

SET TIMEDATE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement resets the absolute seconds (time and day) given by the real-time clock.

SET TIMEDATE

Item Description Range

seconds numeric expression, rounded to the nearest 2.086629 12 E+ 11 thru
hundredth 2.143 252 223 999 9 E+ 11

Example Statements
SET TIMEDATE TIMEDATE+3600
SET TIMEDATE Strange_number
SET TIMEDATE DATE("1 Jan 1989") + TIME("13:57:20")
SET TIMEDATE (BASIC/UX only)

660 Keyword Dictionary

Semantics
The volatile clock is set to 2.08662912 E+ll (midnight March 1, 1900) at power-on
(BASIC Workstation semantics). If there is a battery-backed (non-volatile) clock, then
the volatile clock is synchronized with it at power-up. If the computer is on an SRM
system (and has no battery-backed clock), then the volatile clock is synchronized with the
SRM clock when the SRM and DCOMM binaries are loaded. The clock values represent
Julian time, expreRsed in seconds.

BASIC/UX Specifics
The volatile clock is set to the current HP-UX time at power-on. The clock values
represent Julian time, expressed in seconds.

Note that this statement does NOT reset the HP-UX clock, even if the user is super-user.
Instead it resets the clock which BASIC keeps for itself.

SET TIMEDATE without a parameter resynchronizes the time and date with the HP-UX
clock. This does not affect the timezone. If the timezone is subsequently resynchronized
with HP-UX (via TIMEZONE IS), then the time and date will change accordingly. The
proper way to resynchronize the time, date, and timezone is to do the timezone first as
in:

tIMEZONE IS
SET TIMEDATE

Keyword Dictionary 661

SGN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
None

Yes
Yes
Yes

This function returns 1 if the argument is positive, 0 if it equals zero, and -1 if it is
negative.

Example Statements
Root=SGN(X)*SQR(ABS(X»
Z=2*PI*SGN(Y)

Semantics
COMPLEX arguments are not allowed with this function.

662 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

SHIFT

This function returns an integer which equals the value obtained by shifting the 16-bit
binary representation of the argument by the number of bit positions specified, without
wrap-around.

Item Description Range

argument numeric expression, rounded to an integer -32 768 thru +32 767

bit position
displacement

numeric expression, rounded to an integer -15 thru + 15

Example Statements
New_word=SHIFT(Old_word.-2)
Mask=SHIFT(l.Position)

Semantics
If the bit position displacement is positive, the shift is towards the least-significant bit.
If the bit position displacement is negative, the shift is towards the most-significant bit.
Bits shifted out are lost. Bits shifted in are zeros. The SHIFT operation is performed
without changing the value of any variable in the argument.

Keyword Dictionary 663

SHOW
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement IS used to define an isotropic current unit-of-measure for graphics
operations.

Item

left

right

bottom

top

Description

numeric expression

numeric expression

numeric expression

numeric expression

Example Statements
SHOW -5,5,0,100
SHOW Left ,Right ,Bottom, Top

Semantics

Range

i-Ieft

i- bottom

SHOW defines the values which must be displayed within the hard clip boundaries, or
the boundaries defined by the VIEWPORT statement. SHOW creates isotropic units
(units the same in X and Y). The direction of an axis may be reversed by specifying the
left greater than the right or the bottom greater than the top. (Also see WINDOW.)

664 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

SIGNAL

This statement generates a software interrupt.

Item Description Range

signal selector numeric expression, rounded to an integer 0 thru 15

Example Statements
SIGNAL 3
SIGNAL Bailout

Semantics
If an ON SIGNAL statement for the specified signal selector exists, and all the other
conditions for an event-initiated branch are fulfilled, the branch defined in the ON
SIGNAL statement is taken. If no ON SIGNAL exists for the specified signal selector,
the SIGNAL statement causes no action.

Keyword Dictionary 665

SIN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
None

Yes
Yes
Yes

This function returns the sine of the angle represented by the argument.

Item Description
Range

Restrictions

argument numeric expression in current units of angle absolute values less than:
when arguments are INTEGER or REAL 1.708 312 781 2 E+lO deg.

or
numeric expression in radians when argu- 2.981 568 26 E+8 rad.;
ment is COMPLEX

Examples Statements
Sine=SIN(Angle)
PRINT II Sine of "; Theta; II = II ; S IN (Theta)

666 Keyword Dictionary

see "Range Restriction
Specifics" for COMPLEX
arguments

Semantics
If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

To compute the SIN of a COMPLEX value, the COMPLEX binary must be loaded.

Range Restriction Specifics
The formula used for computing the SIN of a COMPLEX argument is:

where Real_part is the real part the COMPLEX argument and Imag_part is the imaginary
part of the COMPLEX argument. Some values of a COMPLEX argument may cause
errors in this computation. For example,

SIN(CMPLX(O,MAXREAL»

will cause error 22 due to the COSH(Imag_part) calculation.

Note that any COMPLEX function whose definition includes a sine or cosine function
will be evaluated in the radian mode regardless of the current angle mode (i.e. RAD or
DEG).

Keyword Dictionary 667

SINH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

This function returns the hyperbolic sine of a numeric expression.

Item Description/Default

argument numeric expression

Example Statements
Result=SINH(-8.2475)
PRINT "Hyperbolic Sine = ";SINH(Expression)

Semantics

Range
Restrictions

-710 through 710 for INTE­
GER or REAL arguments; see
"Range Restriction Specifics"
for COMPLEX arguments

If an INTEGER or REAL argument is given, this function returns a REAL value. If a
COMPLEX argument is given, this function returns a COMPLEX value.

Range Restriction Specifics
The formula used for computing SINH is as follows:

(EXP(Argument) - EXP(-Argument))/2

where Argument is the argument of the SINH function. Some arguments may cause errors
in intermediate values computed during this computation. For example,

SINH (MAXREAL)

will cause error 22 due to the EXP (Argument) computation.

668 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

SIZE

This function returns the size (number of elements) of a dimension of an array. This
INTEGER value represents the difference between the upper bound and the lower bound,
plus 1.

Item

array name

dimension

Description Range

name of an array any valid name

numeric expression, rounded to an integer 1 thru 6;
~ the RANK of the array

Example Statements
Upperbound(2)=BASE(A.2)+SIZE(A.2)-1
Number_words=SIZE(Words$.l)

See the MAT SORT statement.

SORT

Keyword Dictionary 669

SOUND
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

Yes
Yes
Yes

This statement produces a single tone or multiple tones on the sound generator of an
HP-HIL interface.

Item

voice number

frequency

volume

duration

array of sound
instructions

Description Range

numeric expression, rounded to an integer 1 thru 3

numeric expression, rounded to an integer 83 thru 83 333 Hz
(see following table)

numeric expression, rounded to an integer 0 thru 15

numeric expression, rounded to an integer 0, 0.01 thru 2.55

INTEGER array must contain the proper
number of non-zero
values (see Semantics)

Example Statements
SOUND Voice_num,Freq,Volume,Duration
SOUND 1,440,12,0.50
SOUND Instructions(*)

Semantics
If the mUltiple-parameter syntax is used, then the SOUND statement generates one tone
on the specified voice number; the frequency, volume, and duration of the tone are as
specified by the last three parameters of the statement. Note that the BASIC system does
not wait for the tone to finish before executing the following program line or statement
(if any). If you want to generate a sequence of tones, you must either generate a delay
between SOUND statements (such as with WAIT), or use the SOUND syntax described
below.

670 Keyword Dictionary

If the single-parameter syntax is used (that is, a numeric array is specified), then the
elements of the array are read sequentially and interpreted according to the following
rules:

Instruction Sound Chip Effect Produced

0 Exit the SOUND statement (and stop reading array elements)

1 to 3 The specified voice is to be used; also says to read the next three array elements;
and interpret them as follows, respectively:

• tone number-used to set the frequency
(frequency = 83 333 / tone number).

• volume-O = off; 1 thru 15 are lowest to highest volume.

• duration-values 0 thru 255 are interpreted as follows:

o is interpreted as "sound indefinitely" .

1 thru 255 are interpreted as lO's of milliseconds
(i.e., 1/100 second);

4 Specifies that the noise voice is to be used; also says to read the next three
array elements and interpret them as above (the same as with voice numbers 1
to 3), except that the tone number parameter is interpreted as follows:

o => periodic noise; fast shift register clock;
1 = > periodic noise; medium shift register clock;
2 = > periodic noise; slow shift register clock;
3 = > periodic noise; clock shift register with voice 3;

4 => white noise; fast shift register clock;
5 => white noise; medium shift register clock;
6 => white noise; slow shift register clock;
7 => white noise; clock shift register with voice 3.

5 to 8 Wait for voice 1 to 4, respectively, to finish sounding before executing the next
sound instruction (if any).

9 Read the following array element, and wait the specified interval
(100 microseconds x that element's value) before executing the
next instruction (if any).

If the end of the array is reached on one of these boundaries, then the SOUND statement
terminates normally; however, if the last element of the array has been reached and the
BASIC system expects to read more values, then error 17 will be reported (subscript out
of range).

Keyword Dictionary 671

Producing Notes in the Equal-Tempered Scale
Here is a list of the notes in the equal-tempered1 musical scale. The table shows that the
frequencies available with the SOUND statement are close to the even-tempered notes,
but are not exact.

Tone2 Closest
Note Frequency Number Frequency

E 82.41 1011 82.43

F 87.31 954 87.35

F# 92.50 901 92.49

G 98.00 850 98.04

G# 103.83 803 103.78

A 110.00 758 109.94

A# 116.54 715 116.55

B 123.47 675 123.46

C 130.81 637 130.82

C# 138.59 601 138.66

D 146.83 568 146.71

D# 155.56 536 155.47

E 164.81 506 164.69

F 174.61 477 174.70

F# 185.00 450 185.18

G 196.00 425 196.08

G# 207.65 401 207.81

1 The equal-tempered scale is derived from the following relationship:

frequency of note = 2"(1/12) x frequency of preceding note

Error Error3

(Hz) (%)

+0.02 +0.02

+0.04 +0.05

-0.01 -0.01

+0.04 +0.04

-0.05 -0.05

-0.06 -0.06

+0.01 +0.01

-0.01 -0.01

+0.01 +0.01

+0.07 +0.05

-0.12 -0.08

-0.09 -0.06

-0.12 -0.08

+0.09 +0.05

+0.19 +0.10

+0.08 +0.04

+0.16 +0.08

2 The tone number is the value of the parameter required when using the SOUND statement with an array
of instructions.

3 This error does not account for errors in the clock used to generate these frequencies.

672 Keyword Dictionary

Tone! Closest Error Error2

Note Frequency Number Frequency (Hz) (%)

A 220.00 379 219.88 -0.12 -0.06

A# 233.08 358 232.77 -0.31 -0.13

B 246.94 337 247.28 +0.34 +0.14

C 261.63 319 261.23 () ')() () 1 ~
-v.'-.Ji:./ -U • .LV

C# 277.18 301 276.85 -0.33 -0.12

D 293.66 284 293.43 -0.24 -0.08

D# 311.13 268 310.94 -0.18 -0.06

E 329.63 253 329.38 -0.25 -0.08

F 349.23 239 348.67 -0.55 -0.16

F# 369.99 225 370.37 +0.37 +0.10

G 392.00 213 391.23 -0.76 -0.19

G# 415.30 201 414.59 -0.71 -0.17

A 440.00 189 440.92 +0.92 +0.21

A# 466.16 179 465.55 -0.62 -0.13

B 493.88 169 493.09 -0.79 -0.16

C 523.25 159 524.11 +0.86 +0.16

C# 554.37 150 555.55 +1.19 +0.21

D 587.33 142 586.85 -0.48 -0.08

D# 622.25 134 621.89 -0.37 -0.06

E 659.26 126 661.37 +2.12 +0.32

F 698.46 119 700.28 +1.82 +0.26

F# 739.99 113 737.46 -2.53 -0.34

G 783.99 106 786.16 +2.17 +0.28

G# 830.61 100 833.33 +2.72 +0.33

1 The tone number is the value of the parameter required when using the SOUND statement with an array
of instructions.

2 This error does not account for errors in the clock used to generate these frequencies.

Keyword Dictionary 673

Tone l Closest Error Error2

Note Frequency Number Frequency (Hz) (%)

A 880.00 95 877.19 -2.81 -0.32

A# 932.33 89 936.33 +4.00 +0.43

B 987.77 84 992.06 +4.29 +0.43

C 1046.50 80 1041.66 -4.84 -0.46

C# 1108.73 75 1111.11 +2.38 +0.21

D 1174.66 71 1173.70 -0.95 -0.08

D# 1244.51 67 1243.78 -0.73 -0.06

E 1318.51 63 1322.75 +4.24 +0.32

F 1396.91 60 1388.88 -8.03 -0.57

F# 1479.98 56 1488.09 +8.11 +0.55

G 1567.98 53 1572.32 +4.34 +0.28

G# 1661.22 50 1666.66 +5.44 +0.33

A 1760.00 47 1773.04 +13.04 +0.74

A# 1864.66 45 1851.84 -12.81 -0.69

B 1975.53 42 1984.12 +8.59 +0.43

C 2093.00 40 2083.33 -9.68 -0.46

C# 2217.46 38 2192.97 -24.49 -1.10

D 2349.32 35 2380.94 +31.62 +1.35

D# 2489.02 33 2525.24 +36.23 +1.46

E 2637.02 32 2604.16 -32.86 -1.25

F 2793.83 30 2777.77 -16.06 -0.57

F# 2959.96 28 2976.18 +16.22 +0.55

G 3135.96 27 3086.41 -49.56 -1.58

G# 3322.44 25 3333.32 +10.88 +0.33

1 The tone number is the value of the parameter required when using the SOUND statement with an array
of instructions.

2 This error does not account for errors in the clock used to generate these frequencies.

674 Keyword Dictionary

Tone1 Closest Error Error2

Note Frequency Number Frequency (Hz) (%)
A 3520.00 24 3472.21 -47.79 -1.36

A# 3729.31 22 3787.86 +58.55 +1.57

B 3951.07 21 3968.24 +17.17 +0.43
n 4186.01 20 4166.65 -19.36 -0.46 v

C# 4434.92 19 4385.95 -48.97 -1.10

D 4698.64 18 -4629.61 -69.03 -1.47

D# 4978.03 17 4901.94 -76.09 -1.53

E 5274.04 16 5208.31 -65.73 -1.25

F 5587.65 15 5555.53 -32.12 -0.57

F# 5919.91 14 5952.36 +32.45 +0.55

G 6271.93 13 6410.23 +138.30 +2.21

G# 6644.88 13 6410.23 -0234.64 -3.53

A 7040.00 12 6944.42 -95.58 -1.36

A# 7458.62 11 7575.73 +117.11 +1.57

B 7902.13 11 7575.73 -326.41 -4.13

C 8372.02 10 8333.30 -38.72 -0.46

C# 8869.84 9 9259.22 +389.38 +4.39

D 9397.27 9 9259.22 -138.05 -1.47

D# 9956.06 8 10416.63 +460.56 +4.63

E 10548.08 8 10416.63 -131.46 -1.25

F 11175.30 7 11904.71 +729.41 +6.53

F# 11839.82 7 11904.71 +64.89 +0.55

G 12543.85 7 11904.71 -639.14 -5.10

G# 13289.75 6 13888.833 +599.08 +4.51

1 The tone number is the value of the parameter required when using the SOUND statement with an array
of instructions.

2 This error does not account for errors in the clock used to generate these frequencies.
3 While it is possible to specify frequencies above 13888 Hz, they may be inaudible (due to the high­

frequency roll-off of the speaker amplifier circuit.

Keyword Dictionary 675

SPANISH

See the LEXICAL ORDER IS statement.

676 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

SPOll

This function returns an integer containing the serial poll response from the addressed
device.

Item

I/O path

device selector

Description Range

name name assigned to a device any valid name
(see ASSIGN)

numeric expression, rounded to an integer must include a primary ad­
dress (see Glossary)

Example Statements
Stat=SPOLL(707)
IF SPOLL(~Device) THEN Respond

Keyword Dictionary 677

Semantics
The computer must be the active controller to execute this function. Multiple listeners
are not allowed. One secondary address may be specified to get status from an extended
talker. Refer to the documentation provided with the device being polled for information
concerning the device's status byte.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
UNL UNL
MLA MLA
TAD TAD

Active
Error

SPE
Error

SPE
Controller ATN ATN

Read data Read data
ATN ATN
SPD SPD
UNT UNT

Not Active
Error

Controller

678 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the square root of the argument.

Item Description/Default

argument numeric expression

Examples Statements
Amps=SQRT(Watts/Ohms)
PRINT "Square root of "; X; "=" ; SQR(Z)

Semantics

SQRT

Range
Restrictions

any valid INTEGER or REAL
value for INTEGER and
REAL expressions; for
COMPLEX arguments, the
range restriction for ABS
applies here.

If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

To compute the SQR or SQRT of a COMPLEX value, the COMPLEX binary must be
loaded.

STANDARD

See the LEXICAL ORDER IS statement.

Keyword Dictionary 679

STATUS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement returns the contents of interface or I/O path name status registers.

Item Description Range

I/O path name name assigned to a device, devices, mass any valid name
storage file, buffer, or pipe (see ASSIGN)

interface select numeric expression, rounded to an integer 1 thru 40
code

register number numeric expression, rounded to an integer; interface dependent
Default = 0

numeric name name of a numeric variable any valid name

Example Statements
STATUS l;Xpos,Ypos
STATUS ~File,5;Record

680 Keyword Dictionary

Semantics
The value of the beginning register number is copied into the first variable, the next
register value into the second variable, and so on. The information is read until the
variables in the list are exhausted; there is no wrap-around to the first register. An
attempt to read a nonexistent register generates an error.

The register meanings depend on the specified interface or on the resource to which the
I/O path name is currently assigned. Register 0 of I/O path names can be interrogated
with STATUS even if the I/O path name is currently invalid (Le., unassigned to a
resource). Note that the Status registers of an I/O path are different from the Status
registers of an interface. All Status and Control registers are summarized in the "Interface
Registers" section at the back of the book.

STEP

See the FOR ... NEXT construct.

Keyword Dictionary 681

STOP

This statement terminates execution of the program.

Semantics

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

Once a program is stopped, it cannot be resumed by CONTINUE. RUN must be executed
to restart the program. PAUSE should be used if you intend to continue execution of
the program.

A program can have multiple STOP statements. Encountering an END statement
or pressing the I STOP I (I Shift ~[]!Q£J on the ITF keyboards) key has the same effect as
executing STOP. After a STOP, variables that existed in the main context are available
from the keyboard.

682 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

STORE

This statement creates a file and stores the program or typing-aid key definitions into it.

literal form of file specifier:

'-----y-----I
HFS or SRM files only

Item Description

file specifier string expression

directory path literal

file name literal

Range

(see drawing)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

Example Statements
STORE Filename$kVol$
STORE "Dir<SRM_RW_pass>/Program"

STORE KEY "Typing_aids"
STORE KEY "KEYS:REMOTE"
STORE KEY "/USERS/MARK/TYPING"

(see MASS STORAGE IS)

Keyword Dictionary 683

Semantics
In all STORE statements, an error will occur if the storage media cannot be found, the
media or directory is full, or the file specified already exists. Also, if a LIF protect code
is specified, it will be applied to the new LIF file. To update a file which already exists,
see RE-STORE.

STORE
The STORE statement creates a PROG file and stores an internal form of the program
into that file.

STORE KEY
STORE KEY creates a file of type BDAT, and stores the current typing-aid softkey
definitions (not ON KEY softkey definitions) into it. These definitions may subsequently
be reloaded with the LOAD KEY statement.

For each defined typing-aid softkey. an integer and a string are sent to the file. The
integer is the key number, and the string is the key definition. The data is written with
FORMAT OFF (see the OUTPUT statement). Keys with no definition are not written
to the file.

HFS Permissions and File Headers
In order to STORE a file on an HFS volume, you need to have W (write) and X (search)
permission on the immediately superior directory, as well as X permission on all other
superior directories.

When a file is stored on an HFS volume, access permission bits are set to RW-RW-RW-.
You can modify the access permission bits with PERMIT, if desired.

On HFS volumes, STORE creates a PROG file that contains a 512-byte header (at the
beginning of the file's contents). This header allows the BASIC system to recognize the
file as being a PROG file. (The header is handled automatically by the BASIC system,
so you do not have to take any special actions.)

SRM Pa·sswords and Exclusive Mode
In order to STORE an SRM file, you need to have R (read) and W (write) capabilities on
the immediately superior directory, and R capabilities on all other superior directories.

Including an SRM password with the file name does not protect the file. You must use
PROTECT to assign passwords. You will not receive an error message for including
a password, but a password in the file name portion of the STORE statement will be
ignored.

STORE opens the remote file in exclusive mode (denoted as LOCK in a CAT listing) and
enforces that status on the file until the STORE is complete. While in exclusive mode.
the file is inaccessible to all SRM workstations other than the one executing the STORE.

684 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS
None

Yes
No
No

STORE SYSTEM

The command stores the entire BASIC operating system currently in memory including
any BINs that are loaded (only use on BASIC Workstation).

literal form of file specifier:

"--y------J
SRM files only

Item Description

file specifier string expression

directory path literal

file name literal

volume specifier literal

Example Statements
STORE SYSTEM "SYSTEM_BAS: ,700"
STORE SYSTEM IBACKUP1"
STORE SYSTEM ISYSTEM_B1:REMOTE"
STORE SYSTEM "/SYSTEMS/SYSTEM_NEW"
STORE SYSTEM "/SYS_HFS"

Range

(see drawing)

(see MASS STORAGE IS)

(see Semantics)

(see MASS STORAGE IS)

Keyword Dictionary 685

Semantics
If the file name already exists, an error is reported.

On LIF volumes, SYSTM file names can be up to 10 characters long; on SRM volumes,
they may be up to 16 characters long.

On HFS volumes, SYSTM file names may only be up to 9 characters long, since the HFS
loader assumes that strings will be terminated with the null character, CHR$(O). In
addition, SYSTM file names on HFS volumes less than 9 characters long will be padded
with null characters to a length of 10 characters. This may cause unexpected results, since
null characters act as ;;wild cards" on HFS volumes. For instance, suppose that there are
two SYSTM files on the same HFS volume named SYSTEM_BA and SYSTEM_B, and
that they are listed as 1B and 2B, respectively, by the Boot ROM. Typing 1B will boot
SYSTEM_BA, as expected. However, typing 2B will also boot SYSTEM_BA because of
the null (wild card) character in the 9th position in the SYSTM file named SYSTEM_B.

The BASIC system and any BINs in memory are stored in the SYSTM file. If the file
name begins with SYSTEM_, the Boot ROM can find it and load it at power up or
SYSBOOT. (Note that Boot ROM 3.0 and A, and later versions, can find and load files
beginning with SYS.) On SRM, the system must be located in /SYSTEMS for the Boot
ROM to find it. On HFS, the system must be stored in the root ("/,,) for the Boot ROM
to find it.

Note that if you did a SCRATCH BIN to remove the CRT driver you did not need, and
then stored the system, when you reboot, the CRT driver for the other display is not
available. If the CRT needs the other driver, you cannot use the display. Execute a
LOAD BIN command to load the needed driver.

STORE SYSTEM cannot bf' used with ROM BASIC systems.

HFS Permissions and File Headers
In order to use STORE SYSTEM on an HFS volume, you need to have W (write) and
X (search) permission on the root directory. ON HFS, you can STORE SYSTEM only
to the root directory.

Do not RENAME a file stored into the root directory of an HFS volume by STORE
SYSTEM.

A SYSTM file (or an HP-UX file stored by STORE SYSTEM) which is placed in the
root dirf'ctory of an HFS volume by COpy or LINK will not be found by the Boot ROM.

686 Keyword Dictionary

The R (read) access capability on the system file created with STORE SYSTEM must
be public to allow use of the file for booting.

On HFS volumes, STORE SYSTEM creates an HP-UX file that contains a special header
(at the beginning of the file's contents) to make the file conform to the HP-UX "a. out"
file format. (The header is handled automatically by the BASIC system, so you do not
have to take any special actions.)

SRM Access Capabilities
In order to use STORE SYSTEM on an SRM volume, you need to have R (read) and
W (write) capabilities on the immediately superior directory, and R capabilities on all
other superior directories.

The R (read) access capability on the system file created with STORE SYSTEM must
be public to allow use of the file for booting.

Including an SRM password with the file name does not protect the file. You must use
PROTECT to assign passwords. You will not receive an error message for including a
password, but a password in the file name will be ignored.

BASIC/UX Specifics
STORE SYSTEM is not necessary nor supported on BASIC/UX as BASIC/UX is a
unified system.

Keyword Dictionary 687

SUB
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This is the first statement in a SUB subprogram and can specify the subprogram's formal
parameters.

(SUBEND)-I

parameter 1 ist:

r

required

I

l

r

optional

688 Keyword Dictionary

Item

subprogram
name

numeric name

string name

Description

name of the SUB subprogram

name of a numeric variable

name of a string variable

Range

any valid name

any valid name

any valid name

I/O path name name as::;igned to a device, device::;, or mass any valid name
storage file (see ASSIGN)

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram

Example Statements
SUB Parse(String$)
SUB Transform(~Printer,INTEGER Array(*) ,OPTIONAL Text$)
SUB Complex_sub(COMPLEX Real_imag)

Keyword Dictionary 689

Semantics
SUB subprograms must appear after the main program. The first line of the subprogram
must be a SUB statement. The last line must be a SUBEND statement. Comments after
the SUBEND are considered to be part of the subprogram.

Parameters to the left of the keyword OPTIONAL are required and must be supplied
whenever the subprogram is invoked (see CALL). Parameters to the right of OPTIONAL
are optional, and only need to be supplied if they are needed for a specific operation.
Optional parameters are associated from left to right with any remaining pass parameters
until the pass parameter list is exhausted. An error is generated if the subprogram tries
to use an optional parameter which did not have a value passed to it. The function NPAR
can be used to determine the number of parameters supplied by the CALL statement
invoking the subprogram.

Variables in a subprogram's formal parameter list may not be duplicated in COM or
other declaratory statements within the subprogram. A subprogram may not contain
any SUB statements, or DEF FN statements. Subprograms can be called recursively and
may contain local variables. A unique labeled COM must be used if the local variables
are to preserve their values between invocations of the subprogram.

SUB EXIT may be used to leave the subprogram at some point other than the SUBEND.
Multiple SUBEXITs are allowed, and SUBEXIT may appear in an IF ... THEN statement.
SUBEND is prohibited in IF ... THEN statements, and may only occur once in a
subprogram. ERROR SUBEXIT may be used in place of SUBEXIT.

If you want to use a formal parameter as a BUFFER, it must be declared as a BUFFER
in both the formal parameter list and the calling context.

SUBEND

See the SUB statement.

690 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

SUBEXIT

This statement may be used to return from a SUB subprogram at some point other than
the SUBEND statement. It allows multiple exits from a subprogram.

(SUBEXIT)-.!

See also ERROR SUBEXIT.

Keyword Dictionary 691

SUM
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

This function returns the sum of all elements of a numeric array. The value returned is
of the same type as the array.

Item Description

array name name of a numeric array

Example Statements
Array_sum=SUM(A)
Sum_squares=SUM(Squares)

692 Keyword Dictionary

Range

any valid name

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

SUSPEND INTERACTIVE

This statement disables the I EXECUTE I, I ENTER I, I Return I, I PAUSE I, I STOP I, I CLR I/O I, I Break I,
and (optionally) I RESET 1 key functions during a running program.

(SUSPEND INTERACTIVE)I---.,....~-------~ .. I

~
Example Statements
SUSPEND INTERACTIVE,RESET
IF NOT Kbd_flag THEN SUSPEND INTERACTIVE

Semantics
Execution of a PAUSE statement, a TRACE PAUSE statement, or a fatal execution
error temporarily restores the suspended key functions. CONTINUE after a PAUSE will
again disable the keys.

SUSPEND INTERACTIVE is cancelled by RESUME INTERACTIVE, STOP, END,
RUN, SCRATCH, GET, LOAD, or I RESET I. Although LOAD cancels SUSPEND
INTERACTIVE, LOADSUB does not. SUSPEND INTERACTIVE has no effect unless
a program is running.

Note

Suspending the I RESET 1 key will prevent you from stopping a
program before it ends.

I EXECUTE I, I ENTER I, and I Return 1 can still be used to respond to an ENTER or INPUT
statement, but cannot be used for live keyboard execution.

Keyword Dictionary 693

SWEDISH

See the LEXICAL ORDER IS statement.

694 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

This statement allows labelling with user-defined symbols.

SYMBOL

(SYMBOL~ : "I
FCFC@~-~
.... -----_--&_-~

Item Description Range

array name name of a two-dimensional, two-column or any valid name
three-column
REAL array

Example Statements
SYMBOL My_char(*)
SYMBOL Logo(*) ,FILL ,EDGE

Semantics
The user-defined symbol is created with moves and draws defined in a symbol coordinate
system. The symbol coordinate system is a rectangular area nine units wide and fifteen
units high, that is, a character cell. A symbol can extend outside the limits of the 9x 15
symbol coordinate system rectangle. A symbol defined in the symbol coordinate system
is affected by the label transformations CSIZE, LDIR, and LORG. The symbol is drawn
using the current pen and line type, and it will be clipped at the current clip boundary.

When defining a symbol in the symbol coordinate system, coordinates may be ouside
the 9x 15 character cell; thus, characters can be made which are several character cells
wide and several character cells high. For this reason, the current pen position is not
updated to the next character's reference point, but it remains at the last X,Y coordinate
specified in the array. A move is made to the first point regardless of the value in the
third column of that row in the array.

Keyword Dictionary 695

The symbol may have polygons defined in its data. and the polygons may be filled and/or
edged. The fill color and pen number/line type used are those defined at the time the
polygon is closed.

FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon.
The polygon begins at the first point on the sequence, includes each successive point,
and the final point is connected or closed back to the first point. A polygon is closed
when the end of the array is reached, or when the value in the third column is an even
number less than three, or in the range 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the SYMBOL statement itself, it causes the
polygons defined within it to be filled with the current fill color and/or edged with
the current pen color. If polygon mode is entered from within the array, and the
FILL/EDGE directive for that series of polygons differs from the FILL/EDGE directive
on the SYMBOL statement itself, the directive in the array replaces the directive on the
statement. In other words, if a "start polygon mode" operation selector (a 6, 10, or 11)
is encountered, any current FILL/EDGE directive (whether specified by a keyword or
an operation selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the SYMBOL statement, FILL occurs first. If
neither one is specified, simple line drawing mode is assumed; that is, polygon closure
does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will
be edged, regardless of the directives on the statement.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOlA.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POIA.

696 Keyword Dictionary

LDIR PDIR

Note 4

X

X

Note 2

When using a SYMBOL statement, the following table of operation selectors applies. An
operation selector is the value in the third column of a row of the array to be plotted.
The array must be a two-dimensional, two-column or three-column array. If the third
column exists, it will contain operation selectors which instruct the computer to carry
out certain operations. Polygons may be defined, edged (using the current pen), filled
(using the current fill color), pen and line type may be selected, and so forth. See the
list below.

Operation
Column 1 Column 2 Selector Meaning

X y -2 Pen up before moving

X y -1 Pen down before moving

X y a Pen up after moving (Same as +2)

X Y 1 Pen down after moving

X y 2 Pen up after moving

pen number ignored 3 Select pen

line type repeat value 4 Select line type

color ignored 5 Color value

ignored ignored 6 Start polygon mode with FILL

ignored ignored .7 End polygon mode

ignored ignored 8 End of data for array

ignored ignored 9 NOP (no operation)

ignored ignored 10 Start polygon mode with EDGE

ignored ignored 11 Start polygon mode with FILL and EDGE

ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value

red value green value 14 } Color
blue value ignored 15 Value

ignored ignored >15 Ignored

Keyword Dictionary 697

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array SYMBOL statement. Even is up, odd is
down, positive is after pen motion, negative is before pen motion. Zero is considered
positive.

Selecting Pens
An operation selector of 3 selects a pen. The value in column one is the pen number
desired. The value in column two is ignored.

Selecting Line Types
An operation selector of 4 selects a line type. The line type (column one) selects the
pattern, and the repeat value (column two) is the length in GDUs that the line extends
before a single occurrence of the pattern is finished and it starts over. On the CRT,
the repE'at value is evaluated and rounded down to the next multiple of 5, with 5 as the
minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This
works identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color
Operation selector 14 is used in conjunction with operation selector 15. Red and green
are specified in columns one and two, respectively, and column three has the value 14.
Following this row in the array (not necessarily immediately), is a row whose operation
selector in column three has the value of 15. The first column in that row contains the
blue value. These numbers range from 0 to 32767, where 0 is no color and 32767 is full
intensity. Operation selectors 14 and 15 together comprise the equivalent of an AREA
INTENSITY statement, which means it can be used on both a monochromatic and a
color CRT.

Operation selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through
a Red-Green-Blue (RGB) color model. The first column is encoded in the following
manner. There are three groups of five bits right-justified in the word; that is, the
most significant bit in the word is ignored. Each group of five bits contains a number
which determines the intensity of the corresponding color component, which ranges from
zero to sixteen. The value in each field will be sixteen minus the intensity of the color
component. For example, if the value in the first column of the array is zero, all three
five-bit values would thus be zero. Sixteen minus zero in all three cases would turn on all
three color components to full intensity, and the resultant color would be a bright white.

698 Keyword Dictionary

Assuming you have the desired intensities (which range from ° thru 1) for red, green,
and blue in the variables R, G, and B, respectively, the value for the first column in the
array could be defined thus:

Array(Row,1)=SHIFT(16*(1-B) ,-10)+SHIFT(16*(1-G) ,-5)+16*(1-R)

If there is a pen color in the color map similar to that which you request here, that
non-dithered color will be used. If there is not a similar color, you will get a dithered
pattern.

Polygons
A six, ten, or eleven in the third column of the array begins a "polygon mode". If
the operation selector is 6, the polygon will be filled with the current fill color. If the
operation selector is 10, the polygon will be edged with the current pen number and
line type. If the operation selector is 11, the polygon will be both filled and edged.
Many individual polygons can be filled without terminating the mode with an operation
selector 7. This can be done by specifying several series of draws separated by moves.
The first and second columns are ignored and should not contain the X and Y values of
the first point of a polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a
polygon to be edged and/or filled and also terminates the polygon mode (entered by
operation selectors 6, 10, or 11). The values in the first and second columns are ignored,
and the X and Y values of the last data point should not be in them. Edging and/or
filling of the most recent polygon will begin immediately upon encountering this operation
selector.

Keyword Dictionary 699

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits
cannot be changed from within the SYMBOL statement, so one probably would not have
more than one operation selector 12 in an array to SYMBOL, since the last FRAME will
overwrite all the previous ones.

Premature Termination
Operation selector 8 causes the SYMBOL statement to be terminated. The SYMBOL
statement will successfully terminate if the actual end of the array has been reached, so
the use of operation selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation
selector greater than 15 is also ignored, but operation selector 9 is retained for compati­
bility reasons. Operation selectors less than - 2 are not ignored. If the value in the third
column is less than zero, only evenness/oddness is considered.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will
be edged, regardless of the directives on the statement.

700 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS
None

Yes
Yes
Yes

SYSBOOT

This command returns control to the Boot ROM to restart the system configuration and
selection process. Only use on BASIC Workstation.

literal form of file specifier:

Item Description Range

file specifier string expression, specifying a SYSTM file to (see drawing)
be booted

file name literal

volume specifier literal

Example Statements
SYSBOOT
SYSBOOT Sys_file$&Volume$
SYSBOOT "SYSTEM_BA5: .700"

(see Semantics)

(see MASS STORAGE IS)

Keyword Dictionary 701

Semantics
If no file specifier is included, the normal Boot ROM power-up search sequence is
initiated. (See "Loading BASIC" in the Installing, Using, and Maintaining the BASIC
System manual for a sequence of mass storage devices searched.)

If a file specifier is included, it must a valid LIF file specifier (10 characters or less). The
Boot ROM restricts the file name, if included, to 10 characters. System names on SRM
can be up to 16 characters. To boot a system whose name is more than 10 characters,
do not specify the file name and use the Boot ROM to select the correct file.

If no volume specifier is included in the file specifier, the current default volume IS

assumed.

To boot a system from the SRM, public read access is required and the system must be
located in /SYSTEMS. The directory path, /SYSTEMS must be omitted from the file
specifier. The Boot ROM looks for the file in /SYSTEMS.

To boot from HFS the system must be located in the root directory (/). System names
on HFS must be 9 characters or less.

BASIC/UX Specifics
Not supported on BASIC/UX. It generates an error.

702 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

Yes
Yes
Yes

SYSTEM KEYS

This statement changes the softkey definitions on an ITF keyboard to the System menu.

(SYSTEM KEYS~

Example Statements
SYSTEM KEYS
IF Change_keys THEN SYSTEM KEYS

Semantics
This statement only affects the normal mode of the ITF Keyboard (i.e. it does nothing
on an HP 98203A/B/C Keyboard and causes no visible change on an ITF Keyboard
when the Keyboard Compatibility Mode, KBD CMODE, is on).

Note that the functionality of this statement can be achieved through KBD CONTROL
register 2.

For information on the softkey definitions, read the Installing, Using, and Maintaining
the BASIC System manual.

Keyword Dictionary 703

SYSTEM PRIORITY

This statement sets system priority to a specified value.

(SYSTEM PRIORITY}-.j new pr i or it Y ~

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

Item Description Range

new priority numeric expression, rounded to an integer 0 thru 15

Example Statements
SYSTEM PRIORITY Old
IF Critical_code THEN SYSTEM PRIORITY 15

Semantics

WS,UX
None

Yes
Yes
Yes

Zero is the lowest user-specifiable priority and 15 is the highest. The END, ERROR,
and TIMEOUT events have an effective priority higher than the highest user-specifiable
priority. If no SYSTEM PRIORITY has been executed, minimum system priority is O.

This statement establishes the minimum for system priority. Once the minimum system
priority is raised with this statement, any events of equal or lower priority will be logged
but not serviced. In order to allow service of lower-priority events, minimum system
priority must be explicitly lowered.

If SYSTEM PRIORITY is used to change the minimum system priority in a subprogram
context, the former value is restored when the context is exited.

Error 427 results if SYSTEM PRIORITY is executed in a service routine for an ON
ERROR GOSUB or ON ERROR CALL statement.

704 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

SYSTEMS

This function returns a string containing system status and configuration information.

~ ~-~-~-'-!../-I

literal form of topic specifier:

Keyword Dictionary 705

Item

type of
information

option name

Description

string expression

literal specifying an option or BIN

Example Statements
IF SYSTEM$("TRIG MODE")="RAD" THEN CALL Change_mode
System_prior=VAL(SYSTEM$("SYSTEM PRIORITY"»
SYSTEM$("VERSION:OS") (BASICjUX only)

Semantics

Range

BASIC,
BCD,BUBBLE,CLOCK,
COMPLEX, CRTA, CRTB,
CRTX, CS80, DCOMM,
DISC, EDIT, EPROM,
ERR, FHPIB, GPIO,
GRAPH, GRAPHX, HFS,
HP9885, HPIB, 10, KBD,
LEX, MAT, MS, PDEV,
SERIAL, SRM, TRANS,
XREF, etc.

The topic specifier is used to specify what system configuration information SYSTEM$
will return. The following table lists the valid topic specifiers and the information
returned for each one.

706 Keyword Dictionary

Topic Specifier

AVAILABLE
MEMORY
CRT ID

DUMP DEVICE IS

GRAPHICS
INPUT IS

KBD LINE

KEYBOARD
LANGUAGE

LEXICAL ORDER IS

MASS MEMORY

Information Returned

Bytes of available memory

r 8fmF ~:~::~~~?o~:s Pen Number
II ~~2:r6~t_mapPed

L...-___ _

B=Bit Map Display
Space=Not Bit Map Display

G=Graphics Available
Space=No Graphics

C=Color Available
Space=No Color

L...-____ H=CRT Highlights Available
Space=No Highlights

""------ CRT Width in Characters

....... _------ Distinguishes this format from Series 500 BASIC
responses.

A string containing numerals which specify the device selector for the
currently assigned DUMP DEVICE IS device.
A string containing numerals which specify the device selector for the
currently assigned GRAPHICS INPUT IS device. Zero is returned if
no device is currently selected. (Requires GRAPH)
A string containing the current contents of the keyboard input line(s).
Note that this operation does not change the contents of the line(s).
ASCII, BELGIAN, CANADIAN ENGLISH, CANADIAN FRENCH,
DANISH, DUTCH, FINNISH, FRENCH, GERMAN, ITALIAN,
KATAKANA, LATIN, NORWEGIAN, SPANISH, SWEDISH, SWISS
FRENCH, SWISS GERMAN, SWISS FRENCH*, SWISS GERMAN*,
or
UNITED KINGDOM (Requires LEX)
ASCII, GERMAN, FRENCH, SPANISH, SWEDISH or USER DE­
FINED (Requires LEX)
XOOOYZOOOOOOOOOO

X=Number of internal disc drives
Y =Number of initialized EPROM cards
Z=Number of bubble memory cards
If Y or Z exceed 9, an asterisk appears.

BASIC/UX: value is always a string of O's as internal disk drives,
EPROM or bubble memory cards are not supported.

Keyword Dictionary 707

Topic Specifier

MASS STORAGE IS
MSI

PLOTTER IS

PRINTALL IS

PRINTER IS

SERIAL NUMBER

SYSTEM ID

Information Returned

The mass storage unit specifier of the current MASS STORAGE IS
device, as it appears in a CAT heading.

A string containing numerals which specify the device selector of
the current PLOTTER IS device or the path name of the current
PLOTTER IS file. (Requires GRAPH)

A string containing numerals which specify the device selector of the
current PRINTALL IS device.

A string containing numerals which specify the device selector of
the current PRINTER IS device or the path name of the current
PRINTER IS file.

If an ID PROM is present, this string contains bytes 4-14 of that
PROM. If an ID MODULE is present (ID MODULE requires KBD),
the string contains encoded information. (See the "Software Security"
section in the "Editing Programs" chapter of Using the BASIC System.)
Otherwise, a null string is returned. (Requires KBD.)

8300: 30 on Series 300 computers with an MC68020 processor; or
8300: 20 on Series 300 computers with an MC68010 processor; or
8300: 10 on Series 300 computers with an MC68010 processor; or
bytes 15 thru 21 of the ID PROM in a Series 200 computer (if present);
or
9816. 9826A. or 9836A padded with trailing spaces to make a seven
character string.

SYSTEM PRIORITY A string containing numerals which specify the current system priority.

TIMEZONE IS

TRIG MODE

VERSION:
binary name

A string specifying the seconds from Greenwich Mean Time that
represent the current timezone value.

DEG or RAD

A string containing numerals which specify the revision number of the
specified binary (also displayed after LOAD BIN or LIST BIN).

SYSTEMS with SRM and HFS Systems
When SYSTEM$ of MASS STORAGE IS (MSI), PLOTTER IS, or PRINTER IS is
executed on a system using SRM or HFS volumes, the information returned includes the
full file specifier describing the file or directory about which the information is requested.
(SRM passwords are not included in the specifier.)

The system remembers a maximum of 160 characters for anyone specifier. If a specifier
contains more than 160 characters, the excess characters are removed from the beginning
of the specifier and are not retained. An asterisk (*) as the left-most character in the
specifier indicates that leading characters were truncated for the function.

708 Keyword Dictionary

TAB
See the PRINT and DISP statements.

TABXY
See the PRINT statement.

TALK
See the SEND statement.

Keyword Dictionary 709

TAN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the tangent of the angle represented by the argument.

Item

argument

Description/Default
Range

Restrictions

numeric expression in the current units of absolute values less than:
angle when arguments are INTEGER or 8.541 563 906 E+9 deg.
REAL. ill

1.490 784 13 E+8 rad.
numeric expression in radians when the ar- for INTEGER and REAL
gument is COMPLEX.

Examples Statements
Tangent=TAN(Angle)
PRINT "Tangent of ";Z;"=";TAN(Z)

710 Keyword Dictionary

arguments; see "Range
Restriction Specifics" for
COMPLEX arguments

Semantics
Error 31 is reported for INTEGER and REAL arguments when trying to compute the
TAN of an odd multiple of 90 degrees.

If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

To compute the TAN of a COMPLEX value, the COMPLEX binary must be loaded.

Range Restriction Specifics
The formula used for computing the TAN of a COMPLEX value is:

CMPLX (SIN(2*Real_part) SINH(2*Ima g_ part»)

COS(2 * Real-part) + COSH(2 * Imag_part) , COS(2 * Real-part) + COSH(2 * Imag_part)

where Real_part is the real part the COMPLEX value and Imag_part is the imaginary
part of the COMPLEX value. Some values of a COMPLEX argument may cause errors
in this computation. For example,

TAN(CMPLX(O.710»

will cause error 22 due to the COSH(2*Imag_part) calculation.

Note that any COMPLEX function whose definition includes a sine or cosine function
will be evaluated in the radian mode regardless of the current angle mode (i.e. RAD or
DEG).

Keyword Dictionary 711

TANH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

This function returns the hyperbolic tangent of a numeric expression.

Item Description

argument numeric expression

Example Statements
Result=TANH(-5.7723)
PRINT "Hyperbolic Tangent ";TANH(Expression)

Semantics

Range
Restrictions

any value for INTEGER or
REAL arguments; see
"Range Restriction Specifics"
for COMPLEX arguments.

If an INTEGER or REAL argument is given, this function returns a REAL value. If a
COMPLEX argument is given, this function returns a COMPLEX value.

Range Restriction Specifics
For COMPLEX arguments, the formula for computing TANH is:

CMPLX (SINH(hReaLpart) , SIN(2*Imag_part))

COSH(2 * ReaL-part) + COS(2 * [mag_part) COSH(2 * ReaL-part) + COS(2 * [mag_part)

where Real_part is the real part of the COMPLEX argument and Imag_part is the
imaginary part. Some values of the argument may cause errors in this computation.
For example:

TANH(CMPLX(710,3»

will cause error 22 REAL overflow due to the SINH(2*ReaLpart) calculation.

712 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CLOCK

Yes
Yes
Yes

TIME

This function converts the formatted time of day (HH:MM:SS), into the number of
seconds past midnight. (For information on using TIME as a secondary keyword, see the
OFF TIME, ON TIME, and SET TIME statements.)

literal form of time of day

Item Description

time of day string expression representing the time in 24-
hour format

hours literal

minutes literal

seconds literal; default = a
delimiter literal; single character

Example Statements
Seconds=TIME(T$)
SET TIME TIME(18:37:30")
ON TIME TIME(112:12") GOSUB Food_food

Semantics

Range

(see drawing)

a thru 23

a thru 59

a thru 59.99

(see text)

TIME returns a REAL whole number, in the range 0 thru 86 399, equivalent to the
number of seconds past midnight.

While any number of non-numeric characters may be used as a delimiter, a single colon
is recommended. Leading blanks and non-numeric characters are ignored.

Keyword Dictionary 713

TIME$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CLOCK

Yes
Yes
Yes

This function converts the number of seconds past midnight into a string representing
the time of day (HH:MM:SS).

Item

seconds

Description Range

numeric expression, truncated to the nearest 0 thru 86399
second; seconds past midnight

Example Statements
DISP liThe time is: ";TIME$(TIMEDATE)
PRINT TIME$(45296)

Semantics
TIME$ takes time (in seconds) and returns the time of day in the form HH:MM:SS,
where HH represents hours, MM represents minutes, and SS represents seconds. A
modulo 86400 is performed on the parameter before it is formatted as a time of day.

714 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

TIMEDATE

This function returns the current value of the real-time clock. (Also see the SET
TIMEDATE statement.)

~TIMEDATE~

Example Statements
Elapsed=TIMEDATE-TO
DISP TIMEDATE MOD 86400

Semantics
The value returned by TIMEDATE represents the sum of the last time setti~g and the
number of seconds that have elapsed since that setting was made. The volatile clock
value set at power-on is 2.08662912 E+ 11, which represents midnight March 1, 1900
(for BASIC/UX, the power-on value was the HP-UX time). If there is a battery-backed
(non-volatile) clock, then the volatile clock is synchronized with it at power-up. If the
computer is on an SRM system (and has no battery-backed clock), then the volatile clock
is synchronized with the SRM clock when the SRM and DCOMM binaries are loaded.
The clock values represent Julian time, expressed in seconds. The time value accumulates
from that setting unless it is changed by SET TIME or SET TIMEDATE.

The resolution of the TIMEDATE function is .01 seconds. If the clock is properly set,
TIMEDATE MOD 86400 gives the number of seconds since midnight.

See also TIMEZONE IS.

BASIC/UX Specifics
Resolution is limited to 20 milliseconds.

TIMEOUT

See the OFF TIMEOUT and ON TIMEOUT statements.

Keyword Dictionary 715

TIMEZONE IS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement specifies the offset from Greenwich Mean Time.

m.4EZONE IS

Item Description Range

seconds from
GMT

numeric expression rounded to the nearest 0 thru ±86399.99
hundredth (=24 *60*60-0.01)

Example Statements
TIMEZONE IS Hours_from_GMT*60*60
TIMEZONE IS -7*3600 (Mountain Standard Time)
TIMEZONE IS (BASIC/UX only)

Semantics
Workstation BASIC Specifics

WS,UX
None

Yes
Yes
Yes

TIME ZONE specifies the number of seconds that will be added to the clock to calculate
the "local" time (when it is set to Greenwich Mean Time, or GMT). Therefore TIME­
ZONE IS parameter's value for the GMT timezone is o. The TIMEZONE IS parameter's
value for the Mountain Standard timezone is -7x60x60, because it is 7 hours behind
GMT. For each one-hour timezone to the east, add 3600 seconds to the parameter's
value; for each timezone to the west, subtract 3600 seconds.

You can determine the current value of the TIMEZONE IS parameter by executing
SYSTEM$("TIMEZONE IS"). See SYSTEM$ for details.

716 Keyword Dictionary

Note

If you have a battery-backed (non-volatile) clock, then you may
need to first use SET TIMEDATE before using TIMEZONE IS
and SET TIMEDATE as described above. Otherwise, the clock
may initially be set to 1 March 1900, and SET TIMEDATE could
generate a "parameter out of range" error (when it subtracts the
TIMEZONE's "offset from GMT" parameter from the specified
clock value while calculating the GMT value to put into the clock
register.)

You can use STATUS register 4 of select code 32 to determine
whether or not you have a battery-backed clock.

HP-UX Compatibility
This statement provides compatibility with HP-UX time stamps on files when switching
back and forth between the BASIC and HP-UX operating systems. (If you will not be
doing that, you do not need to use the TIMEZONE statement.)

TIMEZONE is required for HP-UX compatibility when:

• The non-volatile clock is set to Greenwich Mean Time for HP-UX .

• The real-time clock is set to "local" time for BASIC.

An HP-UX environment variable called TZ is used to calculate "local time", which is an
offset from GMT. Thus, when a time stamp (in GMT) is put on a file by HP-UX, the
time value (printed in a directory listing) is derived with this formula:

local time = HP-UX clock value (GMT) + TZ

Keyword Dictionary 717

When using TIMEZONE for HP-UX compatibility. you can set the non-volatile (battery­
backed) clock to GMT by the following sequence of commands:

1. Specify the "local" offset to GMT with TIME ZONE IS. For example:

TIMEZONE IS -7*3600

2. Set the "local" time with SET TIMEDATE. For example:

SET TIMEDATE DATE("5 Dec 19861)+TIME(109:00:00")

(The actual value written into the battery-backed clock is the specified time minus
the TIMEZONE IS value.)

Note also that LIF volumes have "local time" stamps1 while HFS volumes have GMT
time stamps.

BASIC/UX Specifics
The TIMEZONE is set to the current HP-UX timezone in effect at the start of BASIC.
Daylight savings time is automatically included. Any changes in timezone that occur
after BASIC has started must be accounted for by the user with the TIMEZONE IS
statement.

Note that this statement does NOT reset the HP-UX timezone1 even if the user is super­
user. Instead it resets the timezone which BASIC keeps for itself

TIMEZONE IS without a parameter resynchronizes the timezone with the current HP­
UX timezone in effect (this does take into account Daylight Savings Time changes). This
command will affect any previous SET TIME or SET TIMEDATE statements. The
proper way to resynchronize the time1 date1 and timezone is to do the timezone first as
m:

TIMEZONE IS
SET TIMEDATE

You can determine the current value of the TIMEZONE IS parameter by executing
SYSTEM$("TIMEZONE IS11). See SYSTEM$ for details.

Workstation Compatibility
This statement provides backward compatibility to the BASIC workstation. It is intended
to provide compatibility with HP-UX time stamps on files when switching back and
forth between the BASIC and HP-UX operating systems. Since the BASIC Workstation
default timezone is synchronized with HP-UX at start-up time1 this statement is generally
NOT needed when working with BASIC Workstation.

718 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
PDEV

Yes
Yes
Yes

TRACE ALL

This statement allows tracing program flow and variable assignments during program
execution.

Item Description Range

beginning line
number

integer constant identifying a program line; 1 thru 32 766
Default = first program line

beginning line la- name of a program line any valid name
bel

ending line num- integer constant identifying a program line; 1 thru 32 766
ber Default = last program line

ending line label name of a program line

Example Statements
TRACE ALL Sort
TRACE ALL 1500,2450

any valid name

Keyword Dictionary 719

Semantics
The entire program, or any part delimited by beginning and (if needed) ending line
numbers or labels, may be traced.

Tracing starts when the beginning line is first executed and continues until the ending
line is executed.

The ending line is not included in the trace output. The trace output stops immediately
before the ending line is executed. When a line is traced, the line number and any
variable which receives a new value is output to the system message line of the CRT.
Any type of variable (string, numeric or array) can be displayed. For simple string and
numeric variables, the name and the new value are displayed. For arrays, a message is
displayed stating that the array has a new value rather than outputting the entire array
contents.

TRACE ALL output can also be printed on the PRINTALL printer, if PRINTALL is
ON. TRACE ALL is disabled by TRACE OFF. The line numbers specified for TRACE
ALL are not affected by REN.

720 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
PDEV

Yes
Yes
Yes

This statement turns off all tracing activity.

(TRACE OFF ~

TRACE OFF

Keyword Dictionary 721

TRACE PAUSE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
PDEV

Yes
Yes
Yes

This statement causes program execution to pause before executing the specified line,
and displays the next line to be executed on the CRT.

Item Description Range

paused line num- integer constant identifying a program line; 1 thru 32 766
ber Default = next program line

paused line label name of a program line

Example Statements
TRACE PAUSE
TRACE PAUSE Loop_end

Semantics

any valid name

Not specifying a line for TRACE PAUSE results in the pause occurring before the next
line is executed. Only one TRACE PAUSE can be active at a time. TRACE PAUSE is
cancelled by TRACE OFF.

722 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

TRACK

This statement enables and disables tracking of the current locator position on the current
display device.

display device
selector

Item Description

display device se- numeric expression, rounded to an integer
lector

Example Statements
TRACK 709 IS ON
TRACK Plot IS OFF

Semantics

Range

(see Glossary)

The current locator is defined by a GRAPHICS INPUT IS statement, and the current
display device is defined by a PLOTTER IS statement. If TRACK .. .IS ON is executed,
an echo on the current display device tracks the locator position during DIGITIZE
statements. On a CRT, the echo is a 9-by-9-dot crosshair. On a plotter, the pen position
tracks the locator. When a point is digitized, the echo is left at the location of the
digitized point and tracking ceases.

The display device selector must match that used in the most recently executed
PLOTTER IS statement, or error 708 results.

Executing TRACK .. .IS OFF disables tracking.

Keyword Dictionary 723

TRANSFER

This statement initiates unformatted I/O transfers.

724 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
TRANS

Yes
Yes
Yes

Item Description Range

source name I/O path name assigned to a device, a group any valid name
of devices, a mass storage file, pipe, or a
buffer

destination name I/O path name assigned to a device, a group any valid name
of devices, a mass storage file, pipe, or a
buffer

number of bytes numeric expression, rounded to an integer 1 thru 231_ 1

character string expression with a length of zero or one

number of
records

numeric expression, rounded to an integer 1 thru 231_ 1

Example Statements
TRANSFER ~Device TO ~Buff
TRANSFER ~Buff TO ~File;CONT
TRANSFER ~Path TO ~Destination;COUNT 256
TRANSFER ~Source TO ~Buffer;DELIM "/"
TRANSFER ~Path TO ~Buffer;RECORDS 12,EOR(COUNT 8)

Semantics
The TRANSFER statement allows unformatted data transfers between the computer
and devices (mass storage drives are considered devices for this operation). Whenever
possible, a TRANSFER takes place concurrently with continued program execution.
Since no formatting is performed and the TRANSFER statement executes concurrently
(overlapped) with regular program execution, the highest possible data transfer rate is
achieved.

Before a data transfer can take place, a buffer must be declared. Every TRANSFER will
need a buffer as either its source or its destination. An outbound TRANSFER empties
the buffer (source) while an inbound TRANSFER fills the buffer (destination). Device
to device transfers and buffer to buffer transfers are not allowed.

Two types of buffers are available; named and unnamed. A named buffer is a REAL
array, INTEGER array, COMPLEX array, or ;;t string scalar declared with the keyword
BUFFER. See ASSIGN, COM, DIM, INTEd~R, COMPLEX, and REAL. Unnamed
buffers are created in the ASSIGN statement by specifying the keyword BUFFER and
the number of bytes to be reserved for the buffer. See ASSIGN.

Keyword Dictionary 725

Every buffer has two pointers associated with it. The fill pointer indicates the next
available location in the buffer for data. The empty pointer indicates the next item to
be removed from the buffer. This allows an inbound TRANSFER and an outbound
TRANSFER to access the same buffer simultaneously.

BDAT and HP-UX files are the only file types allowed in a TRANSFER. An end-of­
file error will prematurely terminate a TRANSFER, thus triggering an end-of-transfer
condition. If an end-of-record condition was satisfied when the end-of-file was reached,
the EOR event will also be true.

I/O path names should be used to access the contents of the buffer. This ensures the
automatic updating of the fill and empty pointers during a transfer. For named buffers,
the contents of the buffer can also be accessed by the buffer's variable name. However,
accessing the contents of the buffer by the variable name does not update the fill and
empty pointers and is likely to corrupt thr data in the buffer.

TRANSFER with HFS and SRM Files
With files on HFS and SRM volumes, the TRANSFER statement runs in overlapped
mode until the BASIC system encounters a statement that accesses the same volume
(such as CAT or ASSIGN); at such times, the BASIC system performs an implicit WAIT
FOR EaT.

SRM is not supported for TRANSFER in BASIC lUX.

Transfer Parameters
When no parameters are specified for a TRANSFER, an inbound TRANSFER will fill
the buffer with data and then terminate. An outbound transfer will empty the buffer
and then terminate. Both inbound and outbound transfers execute in overlapped mode
when possible.

The CONT parameter specifies that the TRANSFER is to continue indefinitely. Instead
of terminating on buffer full or buffer empty conditions, the TRANSFER will be
temporarily suspended until there is space available in the buffer (for inbound transfers)
or until there is data available in the buffer (for outbound transfers).

The WAIT parameter specifies that the TRANSFER is to take place serially (non­
overlapped). Program execution will not leave the TRANSFER statement until the
data transfer is completed.

726 Keyword Dictionary

A TRANSFER can be specified to terminate when a device dependent signal is received
(END), after a specified number of bytes has been transferred (COUNT), or after a
specific character is detected (DELIM). The DELIM parameter can only be used with
inbound transfers.

If END is included on a TRANSFER to a file, the end-of-file pointer is updated when the
TRANSFER terminates; including EOR(END) causes the end-of-file pointer to be updated
at the end of each record.

When the RECORD parameter is specified, the end-of-record parameter must also be
specified (EaR). The end-of-record condition can be either COUNT, DELIM, END or
any combination of conditions.

Overlapped execution of the TRANSFER statement can be deferred until a record has
been transferred or until the entire TRANSFER has completed. See WAIT FOR EaR
and WAIT FOR EaT.

Supported Devices
The TRANSFER statement supports data transfers to and from the following devices.

HP-IB (HP 98624)

GPIO (HP 98622)

Serial (HP 98626)

Datacomm (HP 98628)

MUX (BASIC lUX only) (HP 98642)

TRANSFER can also be used with BDAT and HP-UX files on any of the mass storage
devices or pipes supported by BASIC.

Transfer Method (BASIC Workstation only)
The transfer method is device dependent and chosen by the computer. The three possible
transfer modes are:

INT interrupt mode

FHS fast handshake

DMA direct memory access

Keyword Dictionary 727

The DMA mode will be used whenever possible. If the DMA mode cannot be used (DMA
card is not installed, both channels are busy, DELIM is specified, or the interface does
not support DMA) then the INT mode will be used. FHS is used with the HP-IB or
GPIO interfaces only when DMA cannot be used and the WAIT parameter is specified.

Interactions
When the computer tries to move into the stopped state, it will wait for any transfer
to complete. Therefore, operations which would cause a stopped state will make the
computer unresponsive (or "hung") if a TRANSFER is in progress. Operations in this
category include a programmed GET, modifying a paused program, and STOP. Also,
the computer will not exit a context until any TRANSFER in that context is complete.
This will cause the program to wait at a SUBEXIT, ERROR SUBEXIT, SUBEND, or
RETURN <expression> statement while a TRANSFER is in progress. If the program
is paused, but a TRANSFER is still active, the run-light will be an "10" character and
the system status Indicator (if present) will say "Transfer."

To terminate a transfer before it has finished (and free the computer), execute an ABORT
10 (or, as a last resort, press I RESET I).

See also: ASSIGN~ WAIT FOR EOT, WAIT FOR EOR, ABORTIO, RESET and the
"Advanced Transfer Techniques" chapter of the BASIC Interfacing Techniques manual.

BASIC/UX Specifics
Either io_burst is used (if specified with CONTROL isc. 255; 3) or else DMA allocation is
managed by the HP-UX kernel and may be used for some or all of the TRANSFER
segments.

728 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

TRIGGER

This statement sends a trigger message to a selected device, or all devices addressed to
listen, on the HP-IB.

Item

I/O path name

device selector

Description Range

name assigned to a device or devices any valid name
(see ASSIGN)

numeric expression, rounded to an integer (see Glossary)

Example Statements
TRIGGER 712
TRIGGER (QHpib

Semantics
The computer must be the active controller to execute this statement.

If only the interface select code is specified, all devices on that interface which are
addressed to listen are triggered. If a primary address is given, the bus is reconfigured
and only the addressed device is triggered.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
Active ATN UNL ATN UNL

Controller GET LAG GET LAG
GET GET

Not Active
Error

Controller

Keyword Dictionary 729

TRIM$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the string stripped of all leading and trailing ASCII spaces.

Example Statements
Unjustify$=TRIM$(II center II)
Clean$=TRIM$(Input$)

Semantics
Only leading and trailing ASCII spaces are removed. Embedded spaces are not affected.

TRN

See the MAT statement.

UNL
See the SEND statement.

730 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
SRM,DCOMM, OR HFS

Yes
Yes
Yes

UNLOCK

This statement is used to remove exclusive access (placed by the LOCK statement) on
an SRM or HFS file associated with an I/O path name (see ASSIGN).

Item Description Range

I/O path name name identifying an I/O path to an SRM file any valid name (see Glos-

Example Statements
UNLOCK (QFile
IF Done THEN UNLOCK (QFile

Semantics

sary)

This statement unlocks a file previously locked with the LOCK statement. While a file
is locked, other SRM workstations or HP-UX processes cannot access the file. After
UNLOCK, other users may access the file provided they possess the proper access
capability (or capabilities).

If multiple LOCKs were executed on the file, the same number of UNLOCKs must be
executed to unlock the file.

UNLOCK is performed automatically by SCRATCH A, SCRATCH BIN, I RESET I and
ASSIGN ... TO * (explicit closing of an I/O path).

BASIC/UX Specifics
Since LOCK is not available for LIF on BASIC/UX, UNLOCK is not supported for LIF
on BASIC/UX. However, no error is generated when a LOCK is attempted on a LIF file.

Keyword Dictionary 731

UNT

See the SEND statement.

UNTIL

See the REPEAT ... UNTIL construct.

732 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

UPC$

This function replaces any lowercase characters with their corresponding uppercase
characters.

Example Statements
Capital$=UPC$("lower")
IF UPC$(Name$)="TOM" THEN Equal_tom

Semantics
The corresponding characters for the Roman Extension alphabetic characters are deter­
mined by the current lexical order. When the lexical order is a user-defined table, the
correspondence is determined by the STANDARD lexical order.

Keyword Dictionary 733

USER KEYS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

Yes
Yes
Yes

This statement changes the soft key definitions on an ITF keyboard to one of three User
soft key menus.

~ menu number ~

Item Description Range

menu number numeric expression, rounded to an integer 1 thru 3

Example Statements
USER Menu_number KEYS
IF Change_keys THEN USER 1 KEYS

Semantics
This statement only affects the normal mode of the ITF Keyboard (i.e. it does nothing
on an HP 98203A/B/C Keyboard and causes no visible change on an ITF Keyboard
when the Keyboard Compatibility mode is on).

Note that the functionality of this statement can be achieved through KBD CONTROL
register 2.

USING

See the DISP, ENTER, LABEL, OUTPUT, and PRINT statements.

734 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

VAL

This function converts a string expression into a numeric value.

Item Description

string argument string expression

Example Statements
Day=VAL(Date$)
IF VAL(Response$)<O THEN Negative

Semantics

Range

numerals, decimal point, sign
and exponent notation

The first non-blank character in the string must be a digit, a plus or minus sign, or a
decimal point. The remaining characters may be digits, a decimal point, or an E, and
must form a valid numeric constant. If an E is present, characters to the left of it must
form a valid mantissa, and characters to the right must form a valid exponent. The string
expression is evaluated when a non-numeric character is encountered or the characters
are exhausted.

Keyword Dictionary 735

VAL$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns a string representation of the value of the argument. The returned
string is in the default print format, except that the first character is not a blank for
positive numbers. No trailing blanks are generated.

Item Description

numeric argument numeric expression

Example Statements
PRINT Esc$;VAL$(Cursor-1)
Special$=Text$&VAL$(Number)

736 Keyword Dictionary

Range

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

VIEWPORT

This statement defines an area onto which WINDOW and SHOW statements are mapped.
It also sets the soft clip limits to the boundaries it defines.

Item

left edge

right edge

bottom edge

top edge

Description

numeric expression

numeric expression

numeric expression

numeric expression

Example Statements
VIEWPORT 0,35,50,80
VIEWPORT Left ,Right ,Bottom, Top

Range

>left edge

>bottom edge

Keyword Dictionary 737

Semantics
The parameters for VIEWPORT are in Graphic Display Units (GDUs). Graphic Display
Units are 1/100 of the shorter axis of a plotting device. The units are isotropic (the same
length in X and Y). The soft clip limits are set to the area specified, and the units defined
by the last WINDOW or SHOW are mapped into the area.

For the plotter specifier "INTERNAL" (the CRT), the shorter axis is Y. The longer axis
is X, which is 100xRATIO GDUs long. For the plotter specifier "HPGL" (which deals
with devices other than the CRT), the RATIO function may be used to determine the
ratio of the length of the X axis to the length of the Y axis. If the ratio is greater than
one, the Y axis is 100 GDUs long, and the length of the X axis is 100xRATIO. If the
ratio is less than one, then the length of the X axis is 100 GDUs and the length of the Y
axis is 100xRATIO.

A value of less than zero for the left edge or bottom is treated as zero. A value greater
than the hard clip limit is treated as the hard clip limit for the right edge and the top.
The left edge must be less than the right edge, and the bottom must be less than the
top, or error 704 results.

738 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

WAIT

This statement will cause the computer to wait approximately the number of seconds
specified before executing the next statement. Numbers less than 0.001 do not generate
a WAIT interval.

@---1 seconds ~

Item Description Range

seconds numeric expression, rounded to the nearest less than 2147483.648
thousandth

Example Statements
WAIT 3
WAIT Old_time/2

BASIC/UX Specifics
Resolution is limited to 20 milliseconds. Accuracy depends on system load and real time
priority, but is generally 40 milliseconds.

Keyword Dictionary 739

WAIT FOR EOR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
TRANS

Yes
Yes
Yes

This statement waits until an end-of-record event occurs in the TRANSFER on the
specified I/O path.

Item Description Range

I/O path name name assigned to a device, a group of de- any valid name
vices, a pipe, or a mass storage file

Example Statements
WAIT FOR EOR @File
WAIT FOR EOR @Device

Semantics
The I/O path may be assigned either to a device, a group of devices, a pipe, or to a mass
storage file. If the I/O path is assigned to a BUFFER, an error is reported when the
WAIT FOR EOR statement is executed.

The WAIT FOR EOR statement prevents further program execution until an end-of­
record event occurs in the TRANSFER whose I/O path name was specified. This allows
ON EOR events, which might otherwise be missed, to be serviced. If the system priority
prevents the servicing of an ON EOR event, the event will be logged.

The I/O path specified must be involved in an active TRANSFER for the statement to
have any effect.

740 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
TRANS

Yes
Yes
Yes

WAIT FOR EOT

This statement waits until the TRANSFER on the specified I/O path is completed.

Item Description Range

I/O path name name assigned to a device, a group of de- any valid name
vices, a pipe, or a mass storage file

Example Statements
WAIT FOR EDT ~File
WAIT FOR EDT ~Device

Semantics
The I/O path may be assigned either to a device, a group of devices, a pipe, or to a mass
storage file. If the I/O path is assigned to a BUFFER, an error is reported when the
WAIT FOR EOT statement is executed.

The WAIT FOR EOT statement prevents further program execution until the specified
TRANSFER is completed. This allows ON EOT events, which might otherwise be
missed, to be serviced. If the system priority prevents the servicing of an ON EOT
event, the event will be logged.

The I/O path specified must be involved in an active TRANSFER for the statement to
have any effect.

Keyword Dictionary 741

WHERE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

This statement returns the current logical position of the pen and, optionally, pen status
information.

Item Description

x variable name name of a numeric variable

y variable name name of a numeric variable

status variable
name

Range

any valid name

any valid name

status variable
name

name of a string variable whose dimensioned any valid name
length is at least 3

Example Statements
WHERE X,Y
WHERE X_position,Y_position,Status$

742 Keyword Dictionary

Semantics
The characters in the status string may be interpreted as follows:

Byte Value

1 "0"

"I"

2 comma

3 "0"

"1"

"2"

Byte 1 Byte 2

Meaning

Pen is up

Pen is down

(delimiter)

Byte 3

Point
Significance

Current position is outside hard clip
limits.

Current position is inside hard clip
limits but outside viewport boundary.

Current position is inside viewport
boundary and hard clip limits.

Keyword Dictionary 743

WHILE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This construct defines a loop which is executed as long as the boolean expression in the
WHILE statement evaluates to true (evaluates to a non-zero value).

boolean
expression

(END WHILE ~

Item Description

boolean numeric expression: evaluated as true if non-
expression zero and false if zero.

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con­
tain properly nested construct(s).

Example Program Segments
840 WHILE Value<Min OR Value>Max
850 BEEP
860 INPUT "Out of range; RE-ENTER",Value
870 END WHILE

1220 WHILE P<=LEN(A$)
1230 IF NUM(A$[P])<32 THEN
1240 A$ [p] =A$ [P+1] Remove control codes
1250 ELSE
1260 P=P+1 Go to next character
1270 END IF
1280 END WHILE

744 Keyword Dictionary

Range

Semantics
The WHILE ... END WHILE construct allows program execution dependent on the
outcome of a relational test performed at the start of the loop. If the condition is true,
the program segment between the WHILE and END WHILE statements is executed and
a branch is made back to the WHILE statement. The program segment will be repeated
until the test is false. When the relational test is false, the program segment is skipped
and execution continues with the first program line after the END WHILE statement.

Branching into a WHILE ... END WHILE construct (via a GOTO) results in normal
execution up to the END WHILE statement, a branch back to the WHILE statement,
and then execution as if the construct had been entered normally.

Nesting Constructs Properly
WHILE ... END WHILE constructs may be nested within other constructs, provided the
inner construct begins and ends before the outer construct can end.

WIDTH

See the PRINTALL IS and PRINTER IS statements.

Keyword Dictionary 745

WINDOW
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement is used to define the current-unit-of-measure for graphics operations.

Item

left edge

right edge

bottom edge

top edge

Description

numeric expression

numeric expression

numeric expression

numeric expression

Example Statements
WINDOW -5.5.0.100
WINDOW Left.Right.Bottom.Top

Semantics

Range

i-left edge

i- bottom edge

WINDOW defines the values represented at the hard clip boundaries, or the boundaries
defined by the VIEWPORT statement. WINDOW may be used to create non-isotropic
(not equal in X and Y) units. The direction of an axis may be reversed by specifying
the left edge greater than the right edge, or the bottom edge greater than the top edge.
(Also see SHOW.)

WORD

See the ASSIGN statement.

746 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

WRITEIO

This statement writes an integer representation of the register-data parameter into the
specified hardware register on the specified interface, or into memory. The actual action
resulting from this operation depends on the interface and register (or memory address)
selected.

Item Description

select code numeric expression, rounded to an integer

register number numeric expression, rounded to an integer
or
memory address

register or numeric expression, rounded to an integer
memory data

Example Statements
WRITEIO 12.0;Set_pctl
WRITEIO Hpib.23;12
WRITEIO 9826.Mem_addr;Poke_byte
WRITEIO 9827.Jsr_address;DO_data

Range

1 thru 31;
-31 thru -1;
±9826; 9827

_231 thru +231 _1
(hardware-dependent)

Keyword Dictionary 74:7

Semantics
A positive select code (appropriate for most interfaces), writes a byte of data to the
register, and a negative select code writes a word of data to the register.

Writing Memory ("Poke"')
Using a select code value of 9826 allows you to write directly into memory addresses.

WRITEIO 9826. Mem_address; Data_byte writes a byte of data

WRITEIO -9826. Mem_address; Data_word writes a word of data

The second parameter specified in the WRITEIO statement is the memory address of
the byte or word to be written. This parameter is interpreted as a decimal address; for
instance, an address of 100 000 is lOA 5, not 2A20. The third parameter is also interpreted
as a decimal number.

CAUTION

WRITING INTO CERTAIN MEMORY ADDRESSES WILL
DAMAGE YOUR COMPUTER'S HARDWARE. IN ORDER TO
AVOID THIS, YOU SHOULD ONLY WRITE INTO NUMERIC
ARRAY VARIABLES WITH WRITEIO. HP CANNOT BE
HELD LIABLE FOR ANY DAMAGES CAUSED BY IM­
PROPER USE OF THIS FEATURE.

For a description of the architecture of the computer, see the Pascal System Designer's
Guide.

748 Keyword Dictionary

Calling Machine-Language Routines
U sing a select code value of 9827 allows you to execute a machine-language JSR ("Jump to
SubRoutine") instruction. One parameter must be specified in the WRITEIO statement
(DO_data in the example below), which will be written into the processor's DO register
before the JSR instruction is executed. The following program provides a framework for
placing a machine-language subroutine in an INTEGER array and then jumping to this
subroutine.

10 DATA (INTEGER values of machine-language
20 DATA instructions go here.)

100 INTEGER Int_array(1:100)
110 READ Int_array(*),DO_data
115 !
120 Jsr_addr=READIO(9827,Int_array(1»
130 WRITEIO 9827,Jsr_addr;DO_data
140 PRINT "Returned from subroutine. II

Read instructions
and DO register data.

Get JSR address.
Put data in DO, then do JSR.

BASIC first keeps a copy of processor registers A2 through A6 on the stack. Then
the value represented by the expression DO_data is placed in the DO register, and a
machine-language JSR instruction is executed. The value of the expression Jsr_addr is
the address of an INTEGER array that contains machine-language instructions. The
value of Jsr_addr is forced to an even address before the JSR is executed.

The last instruction in the subroutine should return control to BASIC with aRTS
("ReTurn from Subroutine") instruction. BASIC will first restore the processor registers
A2 through A6 (from the stack) to the state they were in before the JSR was performed
(by the WRITEIO statement). Register A7 (the stack pointer) must have the same value
at the final RTS as it had when BASIC executed the JSR. The other processor register
can be used freely in the assembly routine. BASIC then resumes program execution at
the line following the WRITEIO statement.

BASIC/UX Specifics
You can write only to your own process' data space.

Keyword Dictionary 749

Notes

750 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
XREF

Yes
No
No

XREF

This command allows you to obtain a cross-reference listing of the identifiers in a program
or subprogram.

Item

device selector

subprogram
name

function name

Description Range

numeric expression; rounded to an integer (see Glossary)
Default = PRINTER IS device

name of a SUB subprogram currently in any valid name
memory

name of a user-defined function currently in any valid name
memory

Keyword Dictionary 751

Example Statements
XREF
XREF #705;FNUser$
XREF Print
XREF :NV

Semantics
The cross-reference listing is printed one context at a time, in the order that they occur
in the program. The main program is listed first, followed by the subprograms.

The cross-reference listing starts with this line:

»» Cross Reference ««

Before each subsequent program segment, this line is printed:

»» Subprogram ««

followed by the line number of the first line in that context and the name of the context.
If the subprogram is a user-defined function, an FN will precede the name, and if it is a
string function, a $ will follow its name.

Within each context, identifiers are listed by type. They occur in the following order:

• NV ~Numeric Variables

• SV String Variables

• IO~I/O Path Names

• LL Line Labels

• LN~Line Numbers

• NF~Numeric Functions

• SF ~String Functions

• SB-SUB Subprograms

• CM --Common Block Names

• UN - Unused Entries

752 Keyword Dictionary

If a type is specified in the command, only that type is printed. If there are no identifiers
of a particular type in the context being cross-referenced, that heading is not printed.

Within each group (which is composed of a header telling what kind of entity follows,
then the list of those entities), names are alphabetized according to the ASCII collating
sequence, and line numbers are in numerical order. If a reference is a formal parameter in
a SUB or DEF FN statement, declared in a COM, DIM, REAL, or INTEGER statement,
or is a line label, the characters <-DEF will be printed immediately to the right of the line
number containing the defining declaration. Note that variables declared by ALLOCATE
are not given this marker. If unlabelled (blank) COM is used, it will have no name
associated with it.

At the end of each context, a line is printed that begins with:

Unused entries =

This is a count of the symbol table entries which have been marked by a prerun as
"unused." Unreferenced symbol table locations which have not yet been marked "unused"
by the pre run processing will show up in the lists of identifiers with empty reference lists.
Note that a subprogram that is not directly recursive will show up in its own cross­
reference listing with an empty reference list. (See the "Debugging Programs" chapter
of BASIC Programming Techniques for further details of "Unused entries" .)

If a sLlbprogram name or MAIN is specified in the XREF command, the above rules are
followed, but only the specified subprogram or the MAIN program is cross-referenced. If
there are two or more subprograms of the same name in the computer, they will all be
cross-referenced.

An XREF can be aborted by pressing I RESET I, I CLR 1/0 lor I Break I.

Keyword Dictionary 753

Notes

754 Keyword Dictionary

Language History A
This manual documents the BASIC 5.0/5.1 Language System used on HP 9000 Series
200/300 computers. There are several versions (other than 5.X) of this language in use
todajt. The following table is provided for those users 'l.;ho have more than one B..l\.LSIC
version, or who are upgrading to BASIC 5.0/5.1. The first column is a list of BASIC
statements. The remaining columns show versions of BASIC with entries in a column
indicating the optional binary file (BIN) you must load to use the keyword. Note that
"n.a." in any of the columns indicates that the binary was not availible for that release
of BASIC. A column without an entry in it indicates that the minimal form of this
statement does not require any binaries.

Since BASIC/UX has all binaries permanently loaded, it is unnecessary to include any
BASIC/UX specific information.

Language History A-I

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

ABORT 10 10
ABORTIO AP2.0 TRANS TRANS
ABS
ACS
ACSH ll.a. ll.a. COMPLEX
ALLOCATE
ALPHA GRAPH GRAPH
ALPHA HEIGHT ll.a. ll.a. CRTX
ALPHA PEN ll.a. ll.a. CRTX
AND
AREA GRAPH2.1 GRAPHX GRAPHX
ARC ll.a. H.a. COMPLEX
ASN
ASNH ll.a. ll.a. COMPLEX
ASSIGN
ATN
ATNH ll.a. ll.a. COMPLEX
AXES GRAPH GRAPH
BASE AP2.0 MAT MAT
BEEP
BINAND
BINCMP
BINEOR
BINIOR
BIT
BREAK AP2.0 10 10
CALL
CAT

CAUSE ERROR ll.a. ll.a.

CDIAL ll.a. H.a. KBD
CHANGE AP2.0 PDEV EDIT & PDEV
CHECKREAD AP2.0 MS MS
CHGRP ll.a. ll.a. HFS
CHOWN ll.a. ll.a. HFS
CHR$

A-2 Language History

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

CHRX ll.a. ll.a. CRTX
CHRY ll.a. ll.a. CTRX
CLEAR 10 10
CLEAR ERROR ll.a. ll.a.

CLEAR LINE ll.a. ll.a. CRTX
CLEAR SCREEN ll.a. ll.a. CRTX
CLIP GRAPH GRAPH
CLS ll.a. ll.a. CRTX
CMPLX ll.a. ll.a. COMPLEX
COM
COMPLEX ll.a. ll.a. COMPLEX
CONJG ll.a. ll.a. COMPLEX
CONT
CONTROL
COpy

COPYLINES AP2.0 PDEV EDIT & PDEV
COS
COSH ll.a. ll.a. COMPLEX
CREATE ll.a. ll.a. MS
CREATE ASCII
CREATE BDAT
CREATE DIR SRM SRM
CRT AP2.0
CSIZE GRAPH GRAPH
DATA
DATE AP2.0 CLOCK CLOCK
DATE$ AP2.0 CLOCK CLOCK
DEALLOCATE
DEF FN
DEG

DEL
DELSUB
DET AP2.0 MAT MAT
DIGITIZE GRAPH2.0 GRAPHX GRAPHX
DIM

Language History A-3

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

DISABLE
DISABLE INTR 10 10
DISP
DISPLAY FUNCTIONS ON/OFF ll.a. ll.a. CRTX
DIV
DOT AP2.0 MAT MAT
DRAW GRAPH GRAPH
DROUND
DUMP ALPHA
DUMP GRAPHICS GRAPH GRAPH
DUMP DEVICE IS GRAPH GRAPH
DVAL AP2.0
DVAL$ AP2.0
EDIT EDIT
EDIT KEY AP2.0 KBD KBD
ENABLE
ENABLEINTR 10 10
END
ENTER
ERRDS AP2.0
ERRL
ERRLN ll.a. ll.a.

ERRM$ AP2.0
ERRN
ERROR RETURN ll.a. ll.a.

ERROR SUBEXIT ll.a. ll.a.

EXOR
EXP
FIND AP2.0 PDEV EDIT & PDEV
FN
FOR ... NEXT
FRACT AP2.0
FRAME GRAPH GRAPH
GCLEAR GRAPH GRAPH
GESCAPE GRAPH2.1 GRAPHX GRAPHX

A-4 Language History

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

GET
GINIT GRAPH GRAPH
GLOAD GRAPH GRAPH
GOSUB
GOTO
GRAPHICS GRAPH GRAPH
GRAPHICS INPUT IS GRAPH2.0 GRAPHX GRAPHX
GRID GRAPH GRAPH
GSEND ll.a. ll.a. GRAPH
GSTORE GRAPH GRAPH
HILBUF$ ll.a. ll.a. KBD
HIL SEND ll.a. ll.a. KBD
IDRAW GRAPH GRAPH
IF ... THEN
IMAG ll.a. ll.a. COMPLEX
IMAGE
IMOVE GRAPH GRAPH
INDENT AP2.0 PDEV PDEV
INITIALIZE
INPUT
INT
INTEGER
IPLOT GRAPH GRAPH
IPLOT array GRAPHX GRAPHX
IVAL AP2.0
IVAL$ AP2.0
KBD AP2.0
KBD CMODE ON/OFF ll.a. ll.a. CRTX
KBD LINE PEN ll.a. ll.a. CRTX
KBD$
KEY LABELS ON/OFF ll.a. ll.a. CRTX
KEY LABELS PEN ll.a. ll.a. CRTX
KNOBX
KNOBY ll.a.

LABEL GRAPH GRAPH

Language History A-5

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

LDIR GRAPH GRAPH
LEN
LET
LEXICAL ORDER IS AP2.0 LEX LEX
LGT
LINE TYPE GRAPH GRAPH
LINK ll.a. ll.a. HFS
LINPUT
LIST EDIT
LIST BIN ll.a.

LIST KEY AP2.0 KBD KBD
LOAD
LOAD BIN
LOAD KEY AP2.0 KBD KBD
LOAD SUB
LOCAL 10 10
LOCAL LOCKOUT 10 10
LOCK SRM SRM SRM
LOG
LOOP
LORG GRAPH GRAPH
LWC$ AP2.0
MASS STORAGE IS
MAT AP2.0 MAT MAT
MAT REORDER AP2.0 MAT MAT
MAT SEARCH ll.a. ll.a. MAT
MAT SORT AP2.0 MAT MAT
MAX AP2.0 MAT MAT
MAXLEN ll.a. ll.a.

MAXREAL Il.a.

MERGE ALPHA ll.a. ll.a. GRAPH
MIN AP2.0 MAT MAT
MINREAL ll.a.

MOD

MODULO ll.a.

A -6 Language History

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

MOVE GRAPH GRAPH
MOVELINES AP2.0 PDEV EDIT & PDEV
NOT
NPAR
NUM

ON/OFF CDIAL ll.a. ll.a. KBD
ON/OFF CYCLE AP2.0 CLOCK CLOCK
ON/OFF DELAY AP2.0 CLOCK CLOCK
ON/OFF END
ON/OFF EOR AP2.0 TRANS TRANS
ON/OFF EOT AP2.0 TRANS TRANS
ON/OFF ERROR
ON/OFF HIL EXT ll.a. ll.a. KBD
ON/OFFINTR 10 10
ON/OFF KBD
ON/OFF KEY
ON/OFF KNOB
ON /OFF SIGNAL AP2.0 10 10
ON/OFF TIME AP2.0 CLOCK CLOCK
ON /OFF TIMEOUT
ON
OPTION BASE
OR
OUTPUT
PASS CONTROL AP2.0 10 10
PAUSE
PEN GRAPH GRAPH
PENUP GRAPH GRAPH
PERMIT ll.a. ll.a. HFS
PDIR ll.a. GRAPH GRAPH
PI
PIVOT GRAPH GRAPH
PLOT GRAPH GRAPH
PLOT array GRAPH2.1 GRAPHX GRAPHX
PLOTTER IS GRAPH GRAPH

Language History A-7

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

PLOTTER IS file n.a. GRAPH GRAPH
POLYGON GRAPH2.1 GRAPHX GRAPHX
POLYLINE GRAPH2.1 GRAPHX GRAPHX
POS
PPOLL 10 10
PPOLL CONFIGURE 10 10
PPOLL RESPONSE AP2.0 10 10
PPOLL UN CONFIGURE 10 10
PRINT
PRINT LABEL n.a. MS MS
PRINT PEN n.a. n.a. CRTX
PRINTALL IS
PRINTER IS
PRINTER IS file n.a.
PROTECT
PROUND AP2.0
PRT AP2.0
PURGE
RAD
RANDOMIZE
RANK AP2.0 MAT MAT
RATIO GRAPH GRAPH
READ
READIO
READ LABEL n.a. MS MS
READ LOCATOR GRAPH2.0 GRAPHX GRAPHX
REAL (statement)
REAL (function) n.a. n.a. COMPLEX
RECTANGLE GRAPH2.1 GRAPHX GRAPHX
RED 1M AP2.0 MAT MAT
REM
REMOTE 10 10
REN
RENAME
REPEAT ... UNTIL

A-8 Language History

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

REQUEST AP2.0 10 10
RE-SAVE EDIT
RES ll.a.

RESET AP2.0 10 10
RESTORE
RE-STORE
RE-STORE BIN ll.a. ll.a.
RE-STORE KEY AP2.0 KBD KBD
RESUME INTERACTIVE
RETURN
REV$ AP2.0
RND
ROTATE
RPLOT GRAPH GRAPH GRAPH
RPLOT array AP2.0 GRAPHX GRAPHX
RPT$
RUN
SAVE EDIT
SC AP2.0
SCRATCH
SCRATCH R ll.a. ll.a.

SCRATCH BIN ll.a.

SCRATCH KEY AP2.0 KBD KBD
SECURE ll.a. PDEV PDEV
SELECT ... CASE
SEND 10 10
SEPARATE ALPHA ll.a. ll.a. GRAPH
SET ALPHA MASK ll.a. ll.a. CRTX
SET CHR ll.a. ll.a. CRTX
SET DISPLAY MASK ll.a. ll.a. CRTX
SET ECHO GRAPH2.0 GRAPHX GRAPHX
SET KEY ll.a. ll.a. KBD
SET LOCATOR ll.a. GRAPHX GRAPHX
SET PEN GRAPH2.1 GRAPHX GRAPHX
SET TIME

Language History A-9

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

SET TIMEDATE
SGN
SHIFT
SHOW GRAPH GRAPH
SIGNAL AP2.0 10 10
SIN
SINH ll.a. ll.a. COMPLEX
SIZE AP2.0 MAT MAT
SOUND ll.a. ll.a. KBD
SPOLL 10 10
SQR
SQRT ll.a. ll.a.

STATUS
STOP
STORE
STORE BIN ll.a. ll.a.

STORE KEY AP2.0 KBD KBD
STORE SYSTEM ll.a.

SUB
SUBEXIT
SUM AP2.0 MAT MAT
SUSPEND INTERACTIVE
SYMBOL GRAPH2.1 GRAPHX GRAPHX
SYSBOOT ll.a.

SYSTEM KEYS H.a. ll.a. CRTX
SYSTEM PRIORITY AP2.0
SYSTEM$ AP2.0

("PLOTTER IS") GRAPH2.0 GRAPH GRAPH
("GRAPHICS INPUT IS") GRAPH2.0 GRAPH GRAPH
("LEXICAL ORDER IS··) AP2.0 LEX LEX
("KEYBOARD LANGUAGE") AP2.0 LEX LEX

TAN
TANH ll.a. H.a. COMPLEX
TIME AP2.0 CLOCK CLOCK
TIME$ AP2.0 CLOCK CLOCK

A-tO Language History

BASIC BASIC BASIC
Statement 2.0/2.1 3.0/4.0 5.0/5.1

TIMEDATE
TIMEZONE IS ll.a. ll.a.

TRACE ALL PDEV PDEV
TRACE OFF PDEV PDEV
'T"D A rn7' n A TT('1",
.1.~Lrt\..J.D rrtUQ£.J PDEV PDEV

TRACK GRAPH2.0 GRAPHX GRAPHX
TRANSFER AP2.0 TRANS TRANS
TRIGGER 10 10
TRIM$ AP2.0
UNLOCK SRM SRM SRM
UPC$ AP2.0
USER i KEYS ll.a. ll.a. CRTX
VAL
VAL$
VIEWPORT GRAPH GRAPH
WAIT
WAIT FOR EOR AP2.0 TRANS TRANS
WAIT FOR EOT AP2.0 TRANS TRANS
WHERE GRAPH2.1 GRAPHX GRAPHX
WHILE
WINDOW GRAPH GRAPH
WRITEIO
XREF AP2.0 XREF XREF

Language History A-II

Notes

A-12 Language History

Glossary B
access capability See "SRM password."

angle mode The current units used for expressing angles. Either degrees or radians may
be specified, using the DEG or RAD statements, respectively. The default at power-on
and SCRATCH A is radians.

A subprogram "inherits" the angle mode of the calling context. If the angle mode is
changed in a subprogram, the mode of the calling context is restored when execution
returns to the calling context.

array A structured data type that can be of type REAL, INTEGER, COMPLEX, or
string. Arrays are created with the DIM, REAL, INTEGER, COMPLEX, ALLOCATE,
or COM statements. Arrays have 1 to 6 dimensions; each dimension is allowed 32 767
elements. The lower and upper bounds for each dimension must fall in the range -32 767
(-32768 for ALLOCATE) thru +32767, and the lower bound must not exceed the
upper bound. The default lower bound is the OPTION BASE value; the OPTION
BASE statement can be used to specify 0 or 1 as the default lower bound. The default
OPTION BASE in every environment is zero.

Each element in a string array is a string whose maximum length is specified in the
declaring statement. The declared length of a string must be in the range 1 thru 32767.

To specify an entire array, the characters (*) are placed after the array name. To specify
a single element of an array, subscripts are placed in parentheses after the array name.
Each subscript must not be less than the current lower bound or greater than the current
upper bound of the corresponding dimension.

Glossary B-1

If an array is not explicitly dimensioned. it is implicitly given the number of dimensions
used in its first occurrence. with an upper bound of 10. Undeclared strings have a default
length of 18.

ASCII This is the acronym for "American Standard Code for Information Interchange" .
It is a commonly used code for representing letters, numerals, punctuation, special
characters. and control characters. A table of the characters in the ASCII set and their
code values can be found in the back of this manual.

bit This term comes from the words "binary digit". A bit is a single digit in base 2 that
must be either a 1 or a O.

byte A group of eight bits processed as a unit.

command A statement that can be typed on the input line and executed (see "state­
menC).

COMPLEX A complex number is an ordered pair (x,y) denoted by Mathematicians as:

x + yi

where:

x is the real part of the complex number.

y is the imaginary part of the complex number. The product yi represents the
value obtained by multiplying y and J -1. For example, the J -9 could be
written as 3i.

context An instance of an environment. A context consists of a specific instance of all
data types and system parameters that may be accessed by a program at a specific point
in its execution. Context changes occur when subprograms are invoked or exited.

B-2 Glossary

device selector A numeric expression used to specify the source or destination of an I/O
operation. A device selector can be either an interface select code or a combination of
an interface select code and an HP-IB primary address. To construct a device selector
with a primary address, multiply the interface select code by 100 and add the primary
address. For instance, a device selector that specifies the device at address 1 on interface
select code 7 is 701. The device at address 0 on interface select code 14 is 1400. Device
selector 1516 selects interface select code 15 and primary address 16.

Secondary addresses may be appended after a primary address by multiplying the device
selector by 100 and adding the address. This may be repeated up to 6 times, adding
a new secondary address each time. A device selector, once rounded, may contain a
maximum of 15 digits. For example, 70502 selects interface 7, primary address 05, and
secondary address 02.

When a device selector contains an odd number of digits, the leftmost digit is the interface
select code. For an even number of digits, the leftmost two digits are the interface select
code.

directory name A directory name specifies a directory of files on a hierarchically
structured mass storage volume .

• A directory name on a Shared Resource Manager (SRM) volume consists of 1 to 16
characters, which may include all ASCII characters except "/" and ":" and "<".
Spaces are ignored .

• A directory name on a Hierarchical File System (HFS) volume consists of 1 to 14
characters for short file name systems, and up to 255 characters for long file name
systems (BASIC/UX only), which may include all ASCII characters except "/" and
"." and "<". Spaces are ignored.

Glossary B-3

dyadic operator An operator that performs its operation with two expressions. It IS

placed between the two expressions. The following dyadic operators are available:

Dyadic
Operator Operation

+ REAL, COMPLEX or INTEGER addition

- REAL, COMPLEX or INTEGER subtraction

* REAL, COMPLEX or INTEGER multiplication

/ REAL or COMPLEX division 1

- REAL, COMPLEX or INTEGER exponentiation 1

& String concatenation

DIV Gives the integer quotient of a division

MOD Gives the remainder of a division

MODULO Gives the remainder of a division, similar to MOD

= Comparison for equality

<> Comparison for inequality

< Comparison for less than

> Comparison for greater than

<= Comparison for less than or equal to

>= Comparison for greater than or equal to

AND Logical AND

OR Logical inclusive OR

EXOR Logical exclusive OR

file name A name used to identify a file. The length and characters allowed in a file name
vary according to the format of the volume on which the file resides .

• A file name on a Logical Interchange Format (LIF) volume consists of 1 to 10
characters, which may include uppercase and lowercase letters, digits 0 through 9,
the underbar (_) character, and national language characters [CHR$(161) through
CHR$ (254)]. The first character in a LIF -compati ble file name must be a letter.
Spaces are ignored. (Note that some LIF implementations do not allow lowercase
letters.)

1 INTEGER arguments are converted to REAL before any computation is done.

B-4 Glossary

• A file name on a Hierarchical File System (HFS) volume consists of 1 to 14
characters on short file name systems, and up to 255 characters on long file name
systems (BASIC/UX only), which may include all ASCII characters except "/" and
":" and "<". Spaces are ignored .

• A file name on a Shared Resource Manager (SRM) volume consists of 1 to 16
characters, which may include all ASCII characters except "/" and ":" and "<".
Spaces are ignored.

function A procedural call that returns a value. The call can be to a user-defined-function
subprogram (such as FNlnvert) or a machine-resident function (such as COS or EXP).
The value returned by the function is used in place of the function call when evaluating
the expression containing the function call.

graphic display unit This is 1/100 of the shortest axis on the plotting device. Graphic
display units are the same size on both the X and Y axes. Abbreviated "GDU".

hard clip limits These are the physical limits of the plotting device.

hierarchy When a numeric or string expression contains more than one operation, the
order of operations is determined by a precedence system. Operations with the highest
precedence are performed first. Multiple operations with the same precedence are
performed left to right. The following tables show the hierarchy for numeric and string
operations.

Precedence

Highest

Lowest

Math Hierarchy

Operator

Parentheses: (may be used to force any order of opera­
tions)

Functions: user-defined and machine-resident

Exponentiation: -

Multiplication and division: * / MOD DIV MODULO

Addition, subtraction, monadic plus and minus: + -

Relational operators: = <> < > <= >=

NOT

AND

OR EXOR

Glossary B-5

String Hierarchy

Precedence Operator

Highest Parentheses

Functions (user-defined and machine-resident) and su b-
string operations

Lowest Concatenation: 8£

I/O path A combination of firmware and hardware that can be used during the transfer
of data to and from a BASIC program. Associated with an I/O path is a unique table
that describes the I/O path. This association table uses 148 bytes and is referenced when
an I/O path name is used. For further details, see the ASSIGN statement.

INTEGER A numeric data type stored internally in two bytes. Two 's-complement
representation is used, giving a range of -32768 thru +32767. If a numeric variable
is not explicitly declared as an INTEGER, it is a REAL.

integer A number with no fractional part; a whole number.

interface select code A numeric expression that selects an interface for an I/O operation.
Interface select codes 1 thru 7 are reserved for internal interfaces. Interface select codes
8 thru 31 are used for external interfaces. The internal HP-IB interface with select code
7 can be specified in statements that are restricted to external devices. (Also see "device
selector" .)

keyword A group of uppercase ASCII If'tters that has a predf'fined meaning to the
computer. Keywords may be typed using all lowercase or all uppercase letters.

LIF This is the acronym for "Logical Interchange Format". This HP standard defines the
format of mass storage files and directories. It allows the interchange of data between
different machines. Series 200/300 files of type ASCII are LIF compatable. See "file
name" for file name restrictions.

LIF protect code A non-listable, two-character code kept with a file description in the
directory of a LIF volume. It guards against accidental changes to an individual file. It
may be any two characters, but must not contain a ">" since that is used to terminate
the protect code. Blanks are trimmed from protect codes. When the result contains more
than two characters, only the first two are used as the actual protect code. A protect
code that is the null string (or all blanks) is interpreted as no protect code.

B-6 Glossary

literal A string constant. When quote marks are used to delimit a literal, those quote
marks are not part of the literal. To include a quote mark in a literal, type two consecutive
quote marks (except in response to a LINPUT statement). The drawings showing literal
forms of specifiers (such as file specifiers) show the quote marks required to delimit the
literal.

logical pen See "pen".

long file name systems (LFN) An HFS file system that allows individual file names to be
up to 255 characters long (BASIC/UX only).

monadic operator An operator that performs its operation with one expression. It is
placed in front of the expression. The following monadic operators are available:

Monadic
Operator Operation

- Reverses the sign of an expression

+ Identity operator

NOT Logical complement

msus The acronym for "mass storage unit specifier". This archaic term is no longer used,
because: it is not descriptive of newer mass storage devices which may have multiple units
or multiple volumes; and it is not an industry-standard term. See the Glossary entry for
volume specifier.

msvs The acronym for "mass storage volume specifier". See the Glossary entry for volume
specifier.

name A name identifies one of the following: variable, line label, common block, I/O path,
function, or subprogram. A name consists of one to fifteen characters. The first character
must be an ASCII letter or one of the characters from CHR$(161) thru CHR$(254).
The remaining characters, if any, can be ASCII letters, numerals, the underbar (_), or
national language characters CHR$(161) thru CHR$(254). Names may be typed using
any combination of uppercase and lowercase letters, unless the name uses the same letters
as a keyword. Conflicts with keywords are resolved by mixing the letter case in the name.
(Also see "file name", "directory name" , and "volume name" .)

node address An integer from 0 through 63 that identifies an SRM device (such as a
workstation or controller).

Glossary B-7

numeric expression

B-8 Glossary

Item Description

monadic operator An operator that performs its operation on the expression imme­
diately to its right: + - NOT

dyadic operator

numeric constant

numeric variable
name

subscript

numeric function
keyword

numeric function
name

parameter

An operator that performs its operation on the two expressions it
is between:
- * / MOD DIV + - = <> < > <= >= AND OR EXOR MODULO

A numeric quantity whose value is expressed using numerals,
decimal point, and optional exponent notation

The name of a numeric variable or the name of a numeric array
from which an element is extracted using subscripts

A numeric expression used to select an element of an array (see
"array")

A keyword that invokes a machine-resident function which returns
a numeric value

The name of a user-defined function that returns a numeric value

A numeric expression, string expression, or I/O path name that
is passed to a function

cOIhparison oper- An operator that returns a 1 (true) or a 0 (false) based on the
ator result of a relational test of the operands it separates: > < <= >=

= <>

password See "SRM password" .

pen All graphical objects are "drawn" using mathematical representations in the com­
puter's memory. This is done with the "logical pen". The logical pen creates five classes
of objects: lines, polygons, labels, axes, and label locations (label locations are actually
the position of an object, rather than an object).

Before these objects can be viewed, they are acted upon by various transformation
matrices, such as scaling and pivoting. No single transformation affects all the objects,
and no object is affected by all the transformations.

The output of the transformations is used to control the "physical pen". The physical
pen creates the image that you actually see on the plotter or CRT. Since the graphics
statements used to create objects act directly upon the logical pen, and you can see only
the output of the physical pen, the location of the logical pen may not always be readily
discernable from what you see.

Glossary B-9

The following table shows which transformations act upon which objects.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES and GRID) X

Location of labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LDIR.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by PDIR.

LDIR

X

Note 2

PDIR

Note 4
X

permission A file-access permission on an HFS volume. See the PERMIT statement for
details.

pipe A connection between programs that allows the output of one program as input
to another. Thus you can chain programs together. Pipes are used in BASICjUX (and
HP-UX). For example,

PRINTER IS "lIp"

is the BASICjUX command to pipe the output from CAT and LIST statements to the
HP-UX command Ip. which sends the CAT or LIST output to the printer.

primary address A numeric expession in the range of 0 thru 31 that specifies an individual
device on an interface which is capable of servicing more than one device. The HP-IB
interface can service multiple devices. (Also see "device selector".)

program line A statement that is preceded by a line number (and an optional line label)
and stored with the I ENTER I, I EXECUTE I, or I Return 1 key into a program (see "statement'·).

protect code See ;'LIF protect code".

B-IO Glossary

REAL A numeric data type that is stored internally in eight bytes using sign-and­
magnitude binary representation. One bit is used for the number's sign, 11 bits for
a biased exponent (bias = 1023), and 52 bits for a mantissa. On all values except 0,
there is an implied "1." preceding the mantissa (this can be thought of as the 53rd bit).
The range of REAL numbers is approximately:

-1.79769313486232 E+308 thru -2.2250738585072 E-308,
0, and

+2.2250738585072 E-308 thru +1.79769313486232 E+308.

If a numeric variable is not explicitly declared as INTEGER or COMPLEX, it is REAL.

record The records referred to in the Series 200/300 BASIC manuals are defined records.
Defined records are the smallest unit of storage directly accessible on the mass storage
media. The length of a record is different for various types of files. For ASCII files,
the record length is the same as the sector size (256, 512, or 1024 bytes). For HP-UX
files, defined records are always 1 byte long. For BDAT files, the defined record length
is determined when a BDAT file is created by a CREATE BDAT statement. All records
in a file are the same size.

There is another type of record called a "physical record" (or sector) which is the unit of
storage handled by the mass storage device and the operating system. Physical records
contain 256, 512, or 1024 bytes and are not accessible to the user via standard BASIC
statements.

recursive See "recursive".

row-major order The order of accessing an array in which the right-most subscript varies
the fastest.

secondary address A device-dependent command sent on HP-IB. It can be interpreted as
a secondary address for the extended talker/listener functions or as part of a command
sequence. (Also see "device selector".)

selector A numeric quantity used to identify or choose something from a number of
possibilities. A selector is ususlly a numeric expression. For example: device selector is
used to identify a device involved in a I/O operation, and pen selector is used to select a
pen on a plotter.

Glossary B-11

short file name systems (SFN) An HFS file system that allows individual file names up
to 14 characters long.

soft clip limits These are plotter clipping limits that are defined by the programmer.
Lines drawn on a plotting device are drawn only inside the clipping limits.

specifier A string used to identify a method for handling an I/O operation. A specifier
is usually a string expression. For example: mass storage volume specifier selects the
proper drivers for a mass storage volume, and plotter specifier chooses the protocol of a
plotting device.

SRM The acronym for Shared Resource Management.

SRM server The computer that controls access to the shared resources of the Shared
Resource Management "file server" system.

SRM server's node address An integer in the range 0 through 63 that identifies the SRM
server.

SRM interface The term used to describe the Resource Management Interface resident
in an SRM workstation computer (not the interface in the SRM server).

SRM password A string of up to 16 characters that is used to protect a file on an SRM
volume from being overwritten, purged, etc. It may be any 16 characters, but must not
contain a ">" since that is used to terminate the password. Passwords are assigned by
the PROTECT statement in BASIC or the Pascal Filer's Access command.

SRM volume name See "volume name" .

SRM volume password See "volume password" .

statement A keyword combined with any additional items that are allowed or required
with that keyword. If a statement is placed after a line number and stored, it becomes
a program lim'. If a statement is typed without a line number and executed, it is called
a command.

B-12 Glossary

string A data type comprised of a contiguous series of characters. Strings require one
byte of memory for each character of declared length, plus a two-byte length header.
Characters are stored using an extended ASCII character set. The first character in a
string is in position 1. The maximum length of a string is 32 767 characters. The current
length of a string can never exceed the dimensioned length.

If a string is not explicitly dimensioned, it is implicitly dimensioned to 18 characters.
Each element in an implicitly dimensioned string array is dimensioned to 18 characters.

When a string is empty, it has a current length of zero and is called a "null string".
All strings are null strings when they are declared. A null string can be represented as
an empty literal (for example: A$=IIII) or as one of three special cases of substring. The
substrings that represent the null string are:

1. Beginning position one greater than current length

2. Ending position one less than beginning position

3. Maximum substring length of zero

Glossary B-13

string expression

B-14 Glossary

Item

literal

string variable
name

subscript

beginning
position

ending position

substring length

string function
keyword

string function
name

parameter

Description

A string constant composed of any characters available
on the keyboard, including those generated with the
ANY CHAR key.

The name of a string variable or the name of a string
array from which a string is extracted using subscripts.

A numeric expression used to select an element of an
array (see "array").

A numeric expression specifying the position of the first
character in a substring (see "substring").

A numeric expression specifying the position of the last
character in a substring (see "substring").

A numeric expression specifying the maximum number
of characters to be included in a substring (see "sub­
string").

A keyword that invokes a machine-resident function
which returns a string value. String function keywords
always end with a dollar sign.

The name of a user-defined function that returns a string
value.

A numeric expression, string expression, or I/O path
name that is is passed to a function.

subprogram Can be a CSUB, a SUB subprogram or a user-defined-function subprogram
(DEF FN). The first line in a SUB subprogram is a SUB statement. The last line in
a SUB subprogram (except for comments) is a SUBEND statement. The first line in
a function subprogram is a DEF FN statement. The last line in a function (except for
comments) is an FNEND statement. Subprograms must follow the END statement of
the main program.

SUB and CSUB subprograms are invoked by CALL. Function subprograms are invoked
by an FN function occurring in an expression. A function subprogram returns a value
that replaces the occurrence of the FN function when the expression is evaluated.
Subprograms may alter the values of parameters passed by reference or variables in
COM. It is recommended that you do not let function subprograms alter values in that
way.

Invoking a subprogram establishes a new context. The new context remains in existence
until the subprogram is properly exited or program execution is stopped. Subprograms
can be recursive.

Glossary B-15

subroutine A program segment accessed by a GOSUB statement and ended with a
RETURN statement.

substring

A substring is a contiguous series of characters that comprises all or part of a string.
Suhstrings may be accessed by specifying a heginning position, or a beginning position
and an ending position, or a beginning position and a maximum substring length.

The beginning position must be at least one and no greater than the current length plus
one. When only the beginning position is specified, the substring includes all characters
from that position to the current end of the string.

The ending position must be no less than the beginning position minus one and no greater
than the dimensioned length of the string. When both beginning and ending positions
are specified, the substring includes all characters from the beginning position to the
ending position or current end of the string, whichever is less.

The maximum substring length must be at least zero and no greater than one plus
the dimensioned length of the string minus the beginning position. When a beginning
position and substring length are specified, the substring starts at the beginning position
and includes the number of characters specified by the substring length. If there are
not enough characters available, the substring includes only the characters from the
beginning position to the current end of the string.

volume A named mass storage media, or portion thereot which may contain several files.
With BASIC, volumes are entities which are recognized by the disc controller. (This is
in contrast to Workstation Pascal logical volumes, which are handled by the "Unitable"
construct in the "TABLE" program; this program partitions a "hard" volume into several
"logical" volumes by using byte offsets from sector number zero.)

B-16 Glossary

volume name (or label) A name used to identify a mass storage volume. The volume
name is assigned to the volume at initialization, but may be changed on LIF and HFS
volumes with PRINT LABEL (and read with CAT and READ LABEL). With SRM
volumes, you may only change it at the SRM console.

• LIF volume names consist of 1 to 6 characters which may be any ASCII character
except "I", ":", ";", and "<".

• HFS volume names may contain 1 to 6 characters, wmcn may be any ASCII
character except "I" and ":" and "<". Spaces are ignored. (PRINT LABEL
and READ LABEL are not supported for HFS disks under BASIC/UX.)

• SRM volume names may contain 1 to 16 characters, which may be any ASCII
character except "I" and ":" and "<". Spaces are ignored.

volume password A "master" password on an SRM volume, assigned at initialization,
that allows complete access to all files on that volume. SRM volume passwords consist of
1 to 16 characters. All ASCII characters except ">" are allowed. The volume password
supercedes all access restrictions placed on files by the PROTECT statement in BASIC
or the Pascal Filer's Access command.

volume specifier A string of information that identifies a mass storage volume. It consists
of a device type (optional), device selector, unit number (optional; default=unit 0), and
volume number (optional; default=volume number 0). Here are some examples:

:CS80, 700
:, 700
: ,802, 0
: ,1400,0,0

See MASS STORAGE IS for the complete syntax drawing.

Glossary B-17

Notes

B-18 Glossary

Table of Contents
Appendix C: Interface Registers

I/O Path Registers .. C-l
Registers for All I/O PaLh~ ... C-l
I/O Path Names Assigned to a Device C-l
I/O Path Names Assigned to an ASCII File C-2
I/O Path Names Assigned to a BDAT File , C-2
I/O Path Names Assigned to an HP-UX File , C-3
I/O Path Names Assigned to a Buffer C-3

Summary of CRT STATUS and CONTROL Registers , C-5
Summary of Keyboard Status and Control Registers C-ll
Summary of HP-IB Status and Control Registers C-17
Summary of RS-232C Serial STATUS and CONTROL Registers C-23
Overview of Datacomm Status and Control Registers. C-32
Summary of Datacomm Interface Status and Control Registers C-34
Summary of Powerfail Status and Control Registers . C-48
Summary of GPIO STATUS and CONTROL Registers C-51
GPIO Registers .. ,C-52
Summary of BCD Status and Control Registers. .. C-54
Summary of EPROM Programmer STATUS and CONTROL Registers C-58
Parity, Cache, Float, and Clock STATUS and CONTROL Register

(Pseudo Select Code 32) ., .. C-60
SRM Interface STATUS Registers. .. C-62
EXT Signal Registers. C-63

Interface Registers c
This section lists the STATUS and CONTROL registers for I/O path names, interfaces,
and pseudo select code 32.

I/O Path Registers

Registers for All I/O Paths
STATUS Register 0 o = Invalid I/O path name

1 = I/O path name assigned to a device
2 = I/O path name assigned to a data file
3 = I/O path name assigned to a buffer
4 = I/O path name assigned to an HP-UX special file

(See "Interface Registers" in the Interfacing Techniques
manual.)

I/O Path Names Assigned to a Device
STATUS Register 1

STATUS Register 2

STATUS Register 3

Interface select code

N umber of devices

Address of 1st device

If assigned to more than one device, the addresses of the other devices are available
starting in STATUS Register 4.

Interface Registers C-l

I/O Path Registers (cont.)

I/O Path Names Assigned to an ASCII File
STATUS Register 1

STATUS Register 2

STATUS Register 3

STATUS Register 4

STATUS Register 5

STATUS Register 6

STATUS Register 9

File type = 3

Device selector of mass storage device

Number of records

Bytes per record = 256

Current record

Current byte wi thin record

Filf' I/O buffering in use (BASIC/UX only)

I/O Path Names Assigned to a BOAT File
STATUS Register 1 File type = 2

STATUS Register 2 Device selector of mass storage device

STATUS Register 3 Number of defined records

STATUS Register 4 Defined record length

STATUS Register 5 Current record

CONTROL Register 5 Set record

STATUS Register 6 Current byte within record

CONTROL Register 6 Set bytf' within record

STATUS Register 7 EOF record

CONTROL Register 7 Set EOF record

STATUS Register 8 Byte within EOF record

CONTROL Register 8 Set byte within EOF record

C-2 Interface Registers

I/O Path Registers (cont.)

I/O Path Names Assigned to an HP-UX File
STATUS Register 1 File type = 4

STATUS Register 2 Device selector of mass storage device

STATUS Register 3 Number of defined records

STATUS Register 4 Defined record length (fixed record length = 1)

STATUS Register 5 Current record

CONTROL Register 5 Set record

STATUS Register 6 Current byte within record

CONTROL Register 6 Set byte within record

STATUS Register 7 EOF record

CONTROL Register 7 Set EOF record

STATUS Register 8 Byte within EOF record

CONTROL Register 8 Set byte within EOF record

STATUS Register 9 File I/O buffering in use (BASIC/UX only)

CONTROL Register 9 Set file I/O buffering (BASIC/UX only)

I/O Path Names Assigned to a Buffer
When the status of register 0 indicates a buffer (3), the status and control registers have
the following meanings.

STATUS Register 1 Buffer type (l=named, 2=um~:1med)

STATUS Register 2 Buffer size in bytes

STATUS Register 3 Current fill pointer

CONTROL Register 3 Set fill pointer

STATUS Register 4 Current number of bytes in buffer

CONTROL Register 4 Set number of bytes

Interface Registers C-3

I/O Path Registers (cont.)

STATUS Register 5 Current empty pointer

CONTROL Register 5 Set empty pointer

STATUS Register 6 Interface select code of inbound TRANSFER

STATUS Register 7 Interface select code of out bound TRANSFER

STATUS Register 8 If non-zero, inbound TRANSFER is continuous

CONTROL Register 8 Cancel continuous mode inbound TRANSFER if zero

STATUS Register 9 If non-zero1 outbound TRANSFER is continuous

CONTROL Register 9 Cancel continuous mode outbound TRANSFER if zero

STATUS Register 10 Termination status for inbound TRANSFER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANS- TRANS- TRANS- Device
Byte Record Match

0 FER FER FER Termi-
Active Aborted Error nation Count Count Character

Value=128 Value=64 Value=32 Value=16 Value=8 Value =4 Value=2 Value = 1

STATUS Register 11 Termination status for outbound TRANSFER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANS- TRANS- TRANS- Device
Byte Record

0 FER FER FER Termi- 0
Active Aborted Error nation Count Count

Value = 128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=O

STATUS Register 12 Total number of bytes transferred by last inbound TRANS­
FER

STATUS Register 13 Total number of bytes transferred by last outbound TRANS­
FER

C-4 Interface Registers

Summary of CRT STATUS and CONTROL Registers

STATUS Register 0

CONTROL Register 0

STATUS Register 1

CONTROL Register 1

STATUS Register 2

CONTROL Register 2

STATUS Register 3

CONTROL Register 3

STATUS Register 4

CONTROL Register 4

Current print position (column)

Set print position (column). See also TAB and TABXY.

Curreut priut position (line)

Set print position (line). See also TABXY.

Insert-character mode

Set insert character mode if non-O

N umber of lines "above screen" .

Undefined

Display functions mode

Set display functions mode if non-D. To perform the same func­
tion, use the statement DISPLAY FUNCTIONS ON/OFF.

Interface Registers C-5

CRT Registers (cont.)

STATUS Register 5 Returns the CRT alpha color value set (or default). This does
not reflect changes due to printing CHR$(x) , where 136~x~143.

CONTROL Register 5 Set default alpha color:

< 16

For Alpha Displays:

Value Result
The number is evaluated MOD
8 and resulting values produce
the following:

o-~- black
1 white
2 ~ red
3 ~ yellow
4 ~ green
5 ~ cyan
6 ~ blue

16 to 135
136

7 ~ magenta
Ignored
White

137 Red
138 Yellow
139 Green
140 Cyan
141
142
143
144 to 255

Blue
Magenta
Black
Ignored

C-6 Interface Registers

For Bit-Mapped Displays:
Values 0 thru 255 which correspond to the graphics pens.
These values are treated as MOD 2A n where n is the number
of display planes.

CONTROL CRT. 5; n sets the values of the CRT registers 15, 16,
and 17, but the converse is not true. That is, STATUS CRT. 5

may not accurately reflect the CRT state if CONTROL 15. 16.

and/or 17 have been executed. Note that to perform the same
function as CONTROL CRT. 5; n, you can use the ALPHA PEN
statement.

CRT Registers (cont.)

STATUS Register 6 ALPHA ON flag l

CONTROL Register 6 Undefined l

STATUS Register 7 GRAPHICS ON flag l

CONTROL Register 7 Undefined l

STATUS Register 8 Display line position l (column)

CONTROL Register 8 Set display line position l (column). See also TAB.

STATUS Register 9 Screenwidth (number of characters). Also available in the
SYSTEM$("CRT ID") function result.

CONTROL Register 9 Undefined

STATUS Register 10 Cursor-enable flag l

CONTROL Register 10 Cursor-enable: l

STATUS Register 11

O=invisible cursor.
non-O=cursor visible.

CRT character mapping flag

CONTROL Register 11 Disable CRT character mapping (if non-O)

STATUS Register 12 Key labels display made. 1

CONTROL Register 12 Set key labels display mode: l

o = typing-aid key labels displayed unless program is running.
1 = key labels always off (or use KEY LABELS OFF).
2 = key labels displayed at all times (or use KEY LABELS
ON).

STATUS Register 13 CRT height (number of lines to be used for alpha display).

CONTROL Register 13 Set CRT height (must be >= 9). Alternately use the ALPHA
HEIGHT statement.

1 Error 713 is given if a window number is specified instead of a select code (BASICjUX only).

Interface Registers C-7

CRT Registers (cont.)

STATUS Register 14 Display replacement rule currently in effect.!

CONTROL Register 14 Set display replacement rule!
(with bit-mapped alpha displays only)
0-0
I-source AND old
2-source AND NOT old
3-source;default
4-NOT source AND old
5-old
6-source EXOR old
7 source OR old
8-source NOR old
9-source EXNOR old

la-NOT old II-source OR NOT old
12-NOT source
13---NOT source OR old
14-source NAND old
15-1

It is strongly recommended that you do not change the default
display replacement rule.

STATUS Register 15 Return the value set (or the default) for the color in the
PRINT /DISP area. This does not reflect changes due to printing
eHR$ ex), where 136:S;x:S; 143.

CONTROL Register 15 Set PRINT/DISP color (or use the PRINT PEN statement). Sim­
ilar to CRT control register 5 but specific to CRT PRINT /DISP

areas; that is, it does not affect the areas covered by CRT
registers 16 and 17.

1 For BASIC/UX information in this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

C-8 Interface Registers

CRT Registers (cont.)

STATUS Register 16 Return the value set (or the default) for the softkey label
color.1

CONTROL Register 16 Set key labels color (or use the KEY LABELS PEN state­
ment).1 Similar to CRT control register 5 but only affects
the softkey labels. Does not affect the areas covered by CRT
registers 15 and 17. When running BASIC/UX in X Windows,
this CONTROL register affects the Keyboard Line area and
Message Line area of the display.

STATUS Register 17 Return the value set (or the default) for the color of the "non­
enhance" area. This includes the keyboard entry line, runlight,
system message line, annunciators, and edit screen.

CONTROL Register 17 Set "non-enhance" color (or use the KBD LINE PEN state­
ment). This includes the keyboard entry line, runlight, system
message line, annunciators, and edit screen. Similar to CRT
control register 5 but does not affect the areas covered by CRT
control registers 15 and 16.

STATUS Register 18 Read the alpha write-enable mask.

CONTROL Register 18 Set alpha write-enable mask to a bit pattern (or use the SET
ALPHA MASK statement). When running BASIC/UX in
the X Window environment, this CONTROL register is not
supported.

STATUS Register 19 Returns the maximum value for ALPHA MASK argument.

CONTROL Register 19 Undefined.

STATUS Register 20 Read the alpha display-enable mask.1

CONTROL Register 20 Set alpha display-enable mask to a bit pattern (or use the SET
DISPLAY MASK statement).1

1 Error 713 is given if a window number is specified instead of a select code (BASIC/UX only).

Interface Registers C-9

CRT Registers (cont.)

STATUS Register 21 Return compatibility mode (0 or 1).

CONTROL Register 21 Switch between the CRT compatibility mode (value#O) and
the native bit-mapped mode (value=O). That is, switch both
alpha and graphics to non-bit-mapped display (if value#O)
or bit-mapped display (if value=O). It effectively initializes
the alpha display and executes a GINIT and a PLOTTER IS

CRT. "INTERNAL".

STATUS Register 22 Undefined (BASIC/UX only).

CONTROL Register 22 Raises a window to the top of the window stack if non-zero;
pushes a window to the bottom of the stack if zero (BASIC/UX
only).

STATUS Register 23 Returns terminal compatibility mode (BASIC/UX only).

CONTROL Register 23 Sets terminal compatibility mode (BASIC/UX only).

1 Error 713 is given if a window number is specified instead of a select code (BASIC/UX only).

C-IO Interface Registers

Summary of Keyboard Status and Control Registers

STATUS Register 0

CONTROL Register 0

STATUS Register 1

CONTROL Register 1

STATUS Register 2

CONTROL Register 2

STATUS Register 3

CONTROL Register 3

STATUS Register 4

CONTROL Register 4

STATUS Register 5

CONTROL Register 5

STATUS Register 6

CONTROL Register 6

CAPS LOCK flag

Set CAPS LOCK if non-O

PRINTALL flag

Set PRINTALL if non-O

Function key menu.

Function key menu:
o = System menu (or SYSTEM KEYS statement)

1-3 = User menu 1 thru 3 (or USER n KEYS statement
along with the appropriate menu number)

Undefined

Set auto-repeat interval. If 1 thru 255, repeat interval in
milliseconds is 10 times this value. 256 = turn off auto-repeat.
(Default at power-on or SCRATCH A is 80ms.)1

Undefined

Set delay before auto-repeat. If 1 thru 256, delay in millisec­
onds is 10 times this value. (Default at power-on or SCRATCH
A is 700ms.)1

KBD$ buffer overflow register. 1 = overflow
Register is reset when read.

Undefined

Typing aid expansion overflow register.
1 = overflow. Register is reset when read.

Undefined

1 For BASIC/UX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

Interface Registers C-ll

Keyboard Registers (cont.)

STATUS Register 7 Interrupt Status

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IN 1-
Reserved Reserved RESET

Keyboard
TIALIZE and

0 0 0 Timeout
For For Key

and Knob
Interrupt Future Future Interrupt Interrupt
Disabled

Use Use Disabled
Disabled

Valu(' = 128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

CONTROL Register 7 Interrupt Disable Mask

Most Significant Bit Least Significant Bit

Bit 7 I Bit 6 I Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INITIAL-
Reserved Reserved

Not Used IZE
For For RESET Keyboard

Timeout
Future Future Key and Knob
Use Use

Value=128 I Value=64 I Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

C-12 Interface Registers

Keyboard Registers (cont.)

STATUS Register 8 Keyboard Language Jumper

o-US ASCII 7-United Kingdom l3-Swiss German

I-Frenc.h 8-Canadian Frenc.h 14-Latin (SpaniRh)

2-German 9-Swiss French l5-Danish

3-Swedish lO-Italian l6-Finnish

4-Spanish II-Belgian 17-Norwegian

5-Katakana l2-Dutch l8-Swiss French*

6-Canadian English 19-5wiss German*

See also SYSTEM$("KEYBOARD LANGUAGE") which requires the LEX binary. Note
that the STATUS statement when used with this register does not require the LEX
binary.

CONTROL Register 8 Undefined

STATUS Register 9 Keyboard Type!

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

l=HIL l=No l=n-Key 1=98203C 1=98203A
Keyboard Keyboard Rollover Keyboard Keyboard

Internal Internal Interface
O=Key- 0=2 or 0 O=Other O=Other Use Use

O=non- board less Keyboard Keyboard
HIL Present rollover

Value = 128 Value=64 Value=32 Value = 16 Value=8 Value=4 Value=2 Value = 1

1 For BASIC/UX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

Interface Registers C-13

Keyboard Registers (cont.)

Bits 5, 1, and 0 of STATUS Register 9 and the following table can be used to determine
the Keyboard Type.

Bit 5 Bit 1 Bit 0 Keyboard Type

0 0 0 HP 98203B or built-in

0 0 1 HP 98203A

1 0 0 ITF (such as the HP 46020A and 46021A)

1 1 0 HP 98203C

CONTROL Register 9 Undefined

STATUS Register 10 Status at Last Knob Interrupt

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CTRL SHIFT
0 0 0 0 0 0 Key Key

Pressed Pressed

Value = 128 Value=64 Value=32 Value=16 Value = 8 Value=4 Value=2 Value = 1

Note that bit 1 is always 0 for keyboards connected to an HP-HIL interface, and with
all HP-HIL mice and knobs (e.g. HP 46083A Rotary Control Knob, HP 46085 Control
Dials, and HP 98203C Keyboard Knob).1

CONTROL Register 10 Undefined

STATUS Register 11 O=horizontal-pulse mode; l=all-pulse mode.

CONTROL Register 11 Set knob pulse mode (0 is default). Sf'€' th€' knob discus­
sion in the "Porting to 3.0" chapter of BASIC Programming
Techniques. 1

STATUS Register 12 "Pseudo-EOI for CTRL-E " flag

CONTROL Register 12 Enable pseudo-EOI for CTRL-E if non-O

1 For BASIC/UX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

C-14 Interface Registers

Keyboard Registers (cont.)

STATUS Register 13 Katakana flag

CONTROL Register 13 Set Katakana if non-O

STATUS Register 14 Numbering of softkeys on ITF keyboard:
o ~ [IT] is key number 1 (default);
1 ~ [IT] is key number 0;

CONTROL Register 14 Softkey numbering on ITF keyboard (see above register de­
scription) .

STATUS Register 15 Currently in 98203 keyboard compatibility mode:
O~OFF (default)
l~ON

CONTROL Register 15 Turns "98203 keyboard compatibility mode" on (:~O) and
off (=0) 1. (See the chapter "Porting to Series 300" in the
Programming Techniques manual for further information about
using this mode.) Note that instead of using the CONTROL
register 15 statement you can use the KBD CMODE statement
to turn the "98203 keyboard compatibility mode" ON and
OFF.

1 For BASICjUX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

Interface Registers C-15

STATUS Register 16 Returns the enabled/disabled status of the up and down arrow
keys, I Prey I, I Next I, and [£) (both shifted and un-shifted for all
of these keys). If the status value is 1 it means these keys are
deactivated. Note that the default value is O.

CONTROL Register 16 Allows you to disable or re-enable the display scrolling keys
mentioned for STATUS Register 16. This prevents accidental
scrolling of the display screen. Executing a 1 with the CON­
TROL statement deactivates the print scrolling keys and a 0
activates them.

STATUS Register 17 Automatic menu switching:

1 :::;. enabled (default)
o :::;. disabled

CONTROL Register 17 Automatic menu switching:

<>0 :::;. enable
o :::;. disable

This register controls whether a system with an ITF keyboard
will switch to (from) the User 2 Menu automatically on enter­
ing (leaving) EDIT mode.

C-16 Interface Registers

Summary of HP-IB Status and Control Registers

Status Register 0 Card identification = 1

Control Register 0 Reset interface if non-zero

Status Register 1

Bit 7 Bit 6 Bit 5 I Bit 4

Interrupts Interrupt Hardware Interrupt
Enabled Requested Level Switches

Bit 3

0

Value=128 Value =64 Value=32 I Value = 16 Value=8

Control Register 1

Bit 7 Bit 6 Bit 5 I Bit 4 I Bit 3

Device SRQ

Interrupt and DMA Status

Bit 2 Bit 1 Bit 0

DMA DMA
0 Channell Channel 0

Enabled Enabled

Value=4 Value = 2 Value=l

Serial Poll Response Byte

I Bit 2 I Bit 1 I Bit 0

Dependent 1=1 did it Device Dependent Status
Status 0=1 didn't

Value = 128 Value=64 Value=32 IValue=16 IValue=8 IValue=4 I Value = 2 IValue=l

Interface Registers C-17

HP-IB Registers (cont.)

Status Register 2 Busy Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit a
Reserved

Hand- TRANS-For Interrupts a a a a Future shake In
Enabled FER In

Use
Progress Progress

Value=l28 Value=64 Value=32 Value=l6 Value=8 Value=4 Value = 2 Value=l

Control Register 2 Parallel Poll Response Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit a
DI08 DI07 DI06 DI05 DI04 DI03 DI02 DIOl
l=True l=True l=True l=True l=True l=True l=True l=True

Value=l28 Value=64 Value=32 Value=l6 Value = 8 Value = 4 Value = 2 Value=l

Status Register 3 Controller Status and Address

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit a
System Active a Primary Address of HP -IB Interface

Controller Controller

Value=l28 Value=64 Value=32 Value=l6 IValue=8 IValue=4 IValue=2 IValue=l

Control Register 3 Set My Address

Bit 7 I Bit 6 I Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit a
Not Used Primary Address

Value=l28IValue=64 IValue=32 Value=l6 IValue=8 IValue=4 I Value = 2 IValue=l

C-18 Interface Registers

HP-IB Registers (cont.)

Status Register 4

Bit 15 Bit 14
T\ 11 1 rarallel

Poll
Active Configur-
Controller

ation
Change

Value = Value=
-32768 16384

Bit 7 Bit 6

Trigger Handshake
Received Error

Value = 128 Value=64

Control Register 4

Interrupt Status

Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Talker/ My Talk My Listen Remote/
Address Address

EOI
SPAS Local Listener

Received Received
Received

Change Address
Change

Value= Value= Value = Value = Value= Value=
8192 4096 2048 1024 512 256

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unrecog- Secondary Unrecog-
nized Command Clear nized SRQ IFC
Universal While Received Addressed Received Received
Command Addressed Command

Value=32 Value=16 Value=8 Value=4 Value = 2 Value=1

Writing anything to this register releases NDAC holdoff. If
non-zero, accept last secondary address as valid. If zero,
don't accept last secondary address (stay in LPAS or TPAS
state).

Interface Registers C-19

HP-IB Registers (cont.)

Status Register 5 Interrupt Enable Mask

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Parallel
My Talk My Listen Remote/

Talker/
Active Poll Con- EOI Listener
Controller figuration Address Address

Received
SPAS Local

Address
Change

Received Received Change Change

Value= Value = Value = Value= Value = Value = Value = Value =
-32768 16384 8192 4096 2048 1024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Hand- Unrecog- Secondary Unrecog-
Trigger shake nized Command Clear nized SRQ IFC
Received Error Universal While Received Addresse Received Received

Cornman Addresse Cornman

Value = 128 Value=64 Value=32 Value=16 Value=8 Value=4 Value = 2 Value=l

Control Register 5 Parallel Poll Response Mask

Bit 7 I Bit 6 I Bit 5 Bit 4 Bit 3 Bit 2 I Bit 1 I Bit 0

Not Used
Uncon- Logic

Data Bit Used for Response figure Sense

Value= 128 I Value=64 IValue=32 Value=16 Value=8 Value=4 IValue=2 IValue=l

c-20 Interface Registers

HP-IB Registers (cont.)

Status Register 6 Interface Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
... "",",,-T

REM LLO
1\..11'1

LPAS TPAS LADS TADS * True

Value= Value = Value= Value= Value = Value= Value = Value=
-32768 16384 8192 4096 2048 1024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0

System Active
0 Primary Address of Interface

Controller Controller

Value=128 Value =64 Value=32 Value=16 IValue=8 IValue=4 IValue=2 I Value = 1

* Least-significant bit of last address recognized

Status Register 7 Bus Control and Data Lines

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

ATN DAV NDAC 1 NRFDI EOI SRQ2 IFC REN
True True True True True True True True

Value = Value = Value = Value= Value= Value= Value = Value =
-32768 16384 8192 4096 2048 1024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DI08 DI07 DI06 DI05 DI04 DI03 DI02 DI01

Value = 128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

1 Only if currently Addressed to Talk, else not valid.
Only if currently Active Controller, else not valid.

Interface Registers C-21

HP-IB Registers (cont.)

Interrupt Enable Register (ENABLE INTR)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Parallel
My Talk My Listen Remote/

Talker/
Active Poll Con- EOI Listener
Controller figuration Address Address

Received SPAS Local
Address

Change Received Received Change
Change

Value = Value = Value = Value= Value = Value= Value = Value=
-32768 16384 8192 4096 2048 1024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unrecog- Secondary Unrecog-
Trigger Handshak nized Command Clear nized SRQ IFC
Received Error Universal While Received Addressed Received Received

Command Addressed Command

Value = 128 Value=64 Value=32 Value = 16 Value=8 Value=4 Value=2 Value=l

C-22 Interface Registers

Summary of RS-232C Serial
STATUS and CONTROL Registers

General Notes: Most Control registers accept values in the range of zero through 255.
Some registers accept only specified values as indicated, or higher values for baud rate
settings. Values less than zero are not accepted. Higher-order bits not needed by the
interface are discarded if the specified value exceeds the valid range.

Reset value is the default value used by the interface after a reset or power-up until the
value is overridden by a CONTROL statement.

See the Interfacing Techniques manual for "Modifications to RS232 and Datacomm
Registers" .

STATUS Register 0 Card Identification

Value returned: 2 indicates a 98626 (if 130 is returned, the
Remote jumper wire has been removed from the interface
card); 66 indicates a 98644 (194 if the Remote jumper has
been removed).

CONTROL Register 0 Interface Reset

STATUS Register 1

Any value from 1 thru 255 resets the card. Execution is
immediate; any data transfers in process are aborted and any
buffered data is destroyed. A value of 0 causes no action.

Interrupt Status

Bit 7 set: Interface hardware interrupt to CPU enabled.

Bit 6 set: Card is requesting interrupt service.

Bits 5&4:

00 Interrupt Level 3

01 Interrupt Level 4

10 Interrupt Level 5

11 Interrupt Level 6

Bits 3 thru 0 not used.

Interface Registers C-23

RS-232C Serial Registers (cont.)

CONTROL Register 1 Transmit BREAK 1

STATUS Register 2

STATUS Register 3

Any non-zero causes a BREAK to be sent.

Interface Activity Status

Bi t 7 thru 4 are not used.
Handshake ended with an escape.

Bit 3 set: Error condition.
Handshake ended with an escape.

Bit 2 set: Handshake in progress. This occurs only
during multi-line function calls.

Bit 1 set: Firmware interrupts enabled (ENABLE INTR
active for this select code). 1

Bit 0: TRANSFER in Progress.

Current Baud Rate

Returns one of the values listed under CONTROL Register 3.

CONTROL Register 3 Set New Baud Rate

Use anyone of the following values:

50
75

110
134.5

(or 134)

150
200
300
600

1200
1800
2400
3600

4800
7200
9600

19200

1 For BASIC/UX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

C-24 Interface Registers

RS-232C Serial Registers (cont.)

STATUS Register 4 Current Character Format

See CONTROL Register 4 for function of individual bits.

CONTROL Register 4: Set Ne',.'l Character Format1

Table 13-8. Character Format and Parity Settings

Parity Sense2

(Switches 5&4)

00 ODD parity 0
01 EVEN parity 1
10 Always ONE
11 Always ZERO

STATUS Register 5

Parity Enable Stop Bits Character Length
(Switch 3) (Switch 2) (Switches 1&0)

Disabled 0 1 stop bit 00 5 bits/char
Enabled 1 1.5 stop bits 01 6 bits/char

(if 5 bits/char), 10 7 bits/char
or 2 stop bits 11 8 bits/char

(if 6, 7, or 8
bits/ char).

Bits 7 and 6 are reserved for future use. 1

Current Status of Modem Control Lines

Returns CURRENT line state values. See CONTROL Regis­
ter 5 for function of each bit.

1 For BASICjUX information on this register, see Volume 2 of the BASICjUX Interfacing Techniques
manual.

2 Parity sense valid only if parity is enabled (bit 3=1). If parity is disabled, parity sense is meaningless.

Interface Registers C-25

RS-232C Serial Registers (cont.)

CONTROL Register 5 Set Modem Control Line States

STATUS Register 6

Sets Modem Control lines or interface state as follows:

Bit 4 set: Enables loopback mode for diagnostic tests. l

Bit 3 set: Set Secondary Request-to-Send modem line to l

active state.

Bit 2 set: Set Data Rate Select modem line to active state.

Bit 1 set: Force Request-to-Send modem line to fixed
active state.

Bit 1 clear: Toggle RTS line as in normal OUTPUT
operations.

Bit 0 set: Force Data Terminal Ready modem line to
fixed active state.

Bit 0 clear: Toggle DTR line as in normal OUTPUT and
ENTER operations.

Data In (not supported on BASIC/UX)

Reads character from input buffer. Buffer contents is not
destroyed, but bit 0 of STATUS Register 10 is cleared.

CONTROL Register 6 Data Out (not supported on BASIC/UX)

Sends character to transmitter holding register. This register
is sometimes used to transmit protocol control characters or
other characters without using OUTPUT statements. Modem
control lines are not affected.

1 For BASIC/UX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

C-26 Interface Registers

RS-232C Serial Registers (cont.)

STATUS Register 7 Optional Receiver/Driver Status (not supported on BASIC/UX)

Returns current value of optional circuit drivers or receivers as
follows:

Bit 3: Optional Circuit Driver 3 (OCD3).

Bit 2: Optional Circuit Driver 4 (OCD4).

Bit 1: Optional Circuit Receiver 2 (OCR2).

Bit 0: Optional Circuit Receiver 3 (OCR3).

Other bits are not used (always 0).

CONTROL Register 7 Set New Optional Driver States (not supported on BASIC/UX)

Sets (bit=l) or clears (bit=O) optional circuit drivers as follows:

Bit 3: Optional Circuit Driver 3 (OCD3),

Bit 2: Optional Circuit Driver 4 (OCD4).

Other bits are not used.

STATUS Register 8 Current Interrupt Enable Mask (not supported on BASIC/UX)

Returns value of interrupt mask associated with most recent
ENABLE INTR statement. Bit functions are as follows:

Bit 3: Enable interrupt on modem line change. STATUS
Register 11 shows which modem line has changed.

Bit 2: Enable interrupt on UART status error. This bit
is used to trap ERROR 167 caused by UART error
conditions. STATUS Register 10, bits 4 thru 1,
show cause of error.

Bit 1: Enable interrupt when Transmitter Holding
Register is empty.

Bit 0: Enable interrupt when Receiver Buffer is full.

Interface Registers C-27

RS-232C Serial Registers (cont.)

STATUS Register 9

STATUS Register 10

Cause of Current Interrupt (not supported on BASIC/UX)

Returns cause of interrupt as follows:

Bits 2&1: Return cause of interrupt

l1=UART error (BREAK, parity, framing, or overrun
error). See STATUS Register 10.

10=Receiver Buffer full. Cleared by STATUS to
Register 6.

01=Transmitter Holding Register empty. Cleared by
CONTROL Register 6 or STATUS to Register 9.

OO=Interrupt caused by change in modem status line(s).
See STATUS Register 11.

Bit 0: Set when no active interrupt requests from UART
are pending. Clear until all pending interrupts
have been serviced.

UART Status (not supported on BASIC/UX)

Bit set indicates UART status or detected error as follows:

Bit 7: Not used.

Bit 6: Transmit Shift Register empty.

Bit 5: Transmit Holding Register empty.

Bit 4: Break received.

Bit 3: Framing error detected.

Bit 2: Parity error detected.

Bit 1: Receive Buffer Overrun error.

Bit 0: Receiver Buffer full.

c-28 Interface Registers

RS-232C Serial Registers (cont.)

STATUS Register 11 Modem Status (not supported on BASIC/UX)

Bit set indicates that the specified modem line or condition is
active.

Bit 7: Data Carrier Detect (DCD) modem line active.

Bit 6: Ring Indicator (RI) modem line active.

Bit 5: Data Set Ready (DSR) modem line active.

Bit 4: Clear-to-Send (CTS) modem line active.

Bit 3: Change in DCD line state detected.

Bit 2: RI modem line changed from true to false.

Bit 1: Change in DSR line state detected.

Bit 0: Change in CTS line state detected.

Interface Registers C-29

RS-232C Serial Registers (cont.)

STATUS Register 12 (not supported on BASIC/UX) Modem Handshake Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Carrier Data Set Clear to
Detect 0 Ready Send 0 0 0 0
Disable l Disable2 Disable3

Value = 128 Value=64 Value=32 Value = 16 Value=8 Value=4 Value=2 Value=l

CONTROL Register 12 (not supported on BASIC/UX) Modem Handshake Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 I Bit 2 I Bit 1 I Bit 0

Carrier
Not

Data Set Clear to
Detect Ready Send Not Used
Disable l Used

Disable2 Disable3

Value=128 Value=64 Value=32 Value = 16 Value=8 I Value=4 I Value=2 1 Value=l

Interrupt Enable Register (EN ABLE INTR)

Bit 7 I Bit 6 I Bit 5 I Bit 4 Bit 3 Bit 2 Bit 1

Trans-
Modem Receiver mitter

Not Used Status Line Holding
Change Status Register

Empty

Value=128 I Value=64 IValue=32 IValue=16 Value = 8 Value=4 Value=2

o = Wait for Carrier Detect on Enter Operations; 1 = Don't wait.
o = Wait for Data Set Ready on Enter and Output Operations; 1 = Don't wait.

3 0 = Wait for Clear to Send on Output Operations; 1 = Don't wait.

C-30 Interface Registers

Bit 0

Receiver
Buffer
Full

Value=l

RS-232C Serial Registers (cont.)

STATUS Register 13 Read 98644 "SCRATCH A default" baud rate!

Returns the baud rate that will be restored whenever
SCRATCH A is executed (same bit-definitions as STATUS
register 3).

CONTROL Register 13 Set 98644 "SCRATCH A default" baud rate!

Sets both the "current" and the "default" baud rate that will
be restored whenever SCRATCH A is executed (same bit­
definitions as CONTROL register 3). Default value in this
register is 9600 baud.

STATUS Register 14 Read 98644 "SCRATCH A default" character format!

Returns the character format parameters that will be restored
whenever SCRATCH A is executed (same bit-definitions as
STATUS register 4).

CONTROL Register 14 Set 98644 "SCRATCH A default" character format!

Sets the character format parameters that will be restored
whenever SCRATCH A is executed (same bit-definitions as
CONTROL register 4). Default value in this register specifies
a character format of 8 bits/character, 1 stop bit, and parity
disabled.

1 For BASICjUX information on this register, see Volume 2 of the BASICjUX Interfacing Techniques
manual.

Interface Registers C-31

Overview of Datacomm
Status and Control Registers

Unless indicated otherwise, the Status Register returns the current value for a given
parameter; the Control Register sets a new value.

See the Interfacing Techniques manual for changes to RS232 and Datacomm Registers.
Register Function

o Control: Interface Reset; Status: Interface Card ID

1 (Status only) Hardware Interrupt Status: I=Enabled, O=Disabled (not supported on
BASIC/UX)

2 (Status only)

3

4 (Status only)

5

6

7 ,Status only)

8

9 (Status only)

10 (Status only)

11 (Status only)

12

13
14

15

16

17

18

19

20

Datacomm activity: O=inactive, I=ENTER in process, 2=OUTPUT in
process l

Select Protocol: 1= Async, 2= Data Link l

Cause of ON INTR program branch (not supported on BASIC/UX)

Control: Terminate transmission; Status: Inbound queue status (not
supported on BASIC/UX)

Control: Send BREAK to remote; Status: I=BREAK pending (not sup­
ported on BASIC/UX)

Current modem receiver line states

Modem driver line states

Control block TYPE (not supported on BASIC/UX)

Control block MODE (not supported on BASIC/UX)

Available outbound queue space (not supported on BASIC/UX)

Control: Connect/Disconnect line; Status: Line connection status (not
supported on BASIC/UX)

ON INTR mask (not supported on BASIC/UX)

Control Block mask (not supported on BASIC/UX)

Modem Line interrupt mask (not supported on BASIC/UX)

Connection timeout limit

No Activity timeout limit

Lost Carrier timeout limit

Transmit timeout limit

Async: Transmit baud rate (line speed)
Data Link: Set Transmit/Receive baud rate (line speed)

1 For BASICjUX information on this register see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

C-32 Interface Registers

Overview of Datacomm Registers (cont.)

Register

21

22

23

24

25 (Status only)

26

Function

Async: Incoming (receiver) baud rate (line speed) (not supported on
BASIC/UX)
Data Link: GID address (0 thru 26 corresponds to "@" thru "Z")
Async: Protocol handshake type (not supported on BASIC/UX)
Data Link: DID address (0 thru 26 corresponds to "@" thru "Z")

Hardware handshake type: ON/OFF, HALF/FULL duplex, (not sup­
ported on BASIC/UX)
Modem/Non-modem

Async: Control Character mask (not supported on BASIC/UX)
Data Link: Block Size limit

Number of received errors since last interface reset (not supported on
BASIC/UX)
Async: First protocol character (ACK/DC1) (not supported on BA­
SIC/UX)
Data Link: NAKs received since last interface reset

For the BASIC Workstation, registers 27-35, 37, and 39 are used with Async protocol
only. They are not accessible during Data Link operations. Note that registers 27-33
and 37-39 are not supported on BASIC/UX and that BASIC/UX does not support Data
Link operations.

Register

27

28

29

30

31

32

33
34

35

36

37

38 (Status only)

39

Function

Second protocol handshake character (ENQ/DC3)

Number of characters in End-of-line sequence

First character in EOL sequence

Second character in EOL sequence

Number of characters in PROMPT sequence

First character in PROMPT sequence

Second character in PROMPT sequence

Data bits per character excluding start, stop and parity

Stop bits per character (0=1, 1=1.5, and 2=2 stop bits)

Parity sense: O=NONE, 1=ODD, 2= EVEN, 3=ZERO, 4=ONE
Data Link: O=NONE (HP 1000 host), 1=ODD (HP 3000 host)

Inter-character time gap in character times (Async only)

Transmit queue status (1=empty)

BREAK time in character times (Async only)

Interface Registers C-33

Summary of Datacomm Interface
Status and Control Registers

General Notes: Control registers accept values in the range of zero through 255.
Some registers require specified values, as indicated. Illegal values
or values less than zero or greater than 255, cause ERROR 327.

Status 0

Control 0

Status 1

Status 2

Status 3

Control 3

Reset value, shown for various Control Registers, is the default value
used by the interface after a reset or power-up until the value is
overridden by a CONTROL statement.

Card Identification
Value returned: 52 (if 180 is returned, check select code switch cluster and
make sure switch R is ON).

Card Reset
Any value, 1 thru 255, resets the card. Immediate execution. Data in
queues is destroyed.

Hardware Interrupt Status (not used in most applications) 1 = Enabled
o = Disabled 1

Datacomm Activityl
0= No activity pending on this select code.
Bit 0 set: ENTER in process.
Bit 1 set: OUTPUT in process.
(Non-zero ONLY during multi-line function calls.)

Current Protocol Identification: 1

1 = Async, 2 = Data Link Protocol

Protocol to be used after next card reset (CONTROL Sc. 0; 1) 1

1 = Async Protocol 2 = Data Link Protocol
This register overrides default switch configuration.

1 For BASICjUX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

C-34 Interface Registers

Datacomm Registers (cont.)

Status 4

Bit

0

1

2

3

4

5

6

7

Status 5

Cause of ON INTR program branch (not supported on BASIC/UX).

Function: Async Protocol Function: Data Link Protocol

Data and/or Control Block available Data Block Available

Prompt received Space available for a new transmission
block

Framing and/or parity error Receive or transmit error

Modem line change Modem line change

No Activity timeout (forces a discon- No Activity timeout (forces a discon-
nect) nect)

Lost carrier or connection timeout Lost carrier or connection timeout
(forces a disconnect) (forces a disconnect)

End-of-line received Not Used

Break received Not used

Contents of this register are cleared when a STATUS statement is executed
to it.

Inbound queue status (not supported on BASIC/UX)

Value Interpretation

a Queue is empty

1 Queue contains data but no control
blocks

2 Queue contains one or more control
blocks but no data

3 Queue contains both data and one or
more control blocks

Interface Registers C-35

Datacomm Registers (cont.)

Control 5

Status 6

Control 6

Status 7

Terminate Transmission (not supported on BASIC/UX)
OUTPUT S. 5 ; 0 is equivalent to OUTPUT S; END

Data Link: Sends previous data as a single block with an ETX terminator 1

then idles the line with an EOT.

Async: Tells card to turn half-duplex line around. Does nothing when
line is full-duplex. The next data OUTPUT automatically
regains control of the line by raising the RTS (request-to­
send) modem line.

Break status: 1 = BREAK transmission pending. 0 = no BREAK pending.
(not supported on BASIC/UX)

Send Break; causes a Break to be sent as follows: 1

Data Link Protocol: Send Reverse Interrupt (RVI) reply to inbound block.
or CN character instead of data in next outbound
block.

Async Protocol: Transmit Break. Length is defined by Control Regis­
ter 39.

Note that the value sent to the register is arbitrary.

Modem receiver line states (values shown are for male cable connecter
option for connection to modems).

Bit 0: Data Mode (Data Set Ready) line
Bit 1: Receive ready (Data Carrier Detect line)
Bit 2: Clear-to-send (CTS) line
Bi t 3: Incoming call (Ring Indicator line) 1

Bit 4: Depends on cable option or adapter used 1

1 For BASICjUX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

C-36 Interface Registers

Datacomm Registers (cont.)

Status 8

Control 8

Status 9

Status 10

Returns modem driver line states.

Sets modem driver line states (values shown are for male cable connector
option for connection to modems).

Bit 0: Request-to-send (RS or RTS) line 1 = line set (active)
Bit 1: Data Terminal Ready (DTR) line 0 = line clear (inactive)
Bit 2: Driver 1: Data Rate Select
Bit 3: Driver 2: Depends on cable option 1 or adapter used
Bit 4: Driver 3: Depends on cable option or adapter used
Bit 5: Driver 4: Depends on cable option or adapter used
Bit 6,7: Not used

Reset value=O prior to connect. Post-connect value is handshake depen­
dent. Note that RTS line cannot be altered (except by OUTPUT or OUT­
PUT ... END) for half-duplex modem connections.

Returns control block TYPE if last ENTER terminated on a control block.
See Status Register 10 for values (not supported on BASIC/UX).

Returns control block MODE if last ENTER terminated on a control block
(not supported on BASIC/UX).

Async Protocol Control Blocks

Type Mode Interpretation

250 1 Break received (Channel A)

251 12 Framing error in the following charac-
ter

251 22 Parity error in the following character

251 32 Parity and framing errors in the fol-
lowing character

252 1 End-of-line terminator detected

253 1 Prompt received from remote

0 0 No Control Block encountered

1 For BASIC/UX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

2 Parity/framing error control blocks are not generated when characters with parity and/or framing errors
are replaced by an underscore (_) character.

Interface Registers C-37

Datacomm Registers (cont.)

Status 11

Status 12

Data Link Protocol Control Blocks

Type Mode Interpretation

254 1 Preceding block terminated by ETB char-
acter

254 2 Preceding block terminated by ETX char-
acter

253 1 (see following table for Mode interpreta-
tion)

a a No Control Block encountered

Mode Bit(s) Interpretation

a 1 = 'fransparent data in following block
a = Normal data in following block

2,1 00 = Device select
01 = Group select
10 = Line select

3 1 = Command channel
2 = Data channel

Returns available outbound queue space (in bytes), provided there is
sufficient space for at least three control blocks. If not, value is zero (not
supported on BASIC/UX).

Datacomm Line connection status (not supported on BASIC/UX)

Value Interpretation

a Disconnected

1 Attempting Connection

2 Dialing

3 Connected2

4 Suspended

5 Currently receiving data
(Data Link only)

6 Currently transmitting data
(Data Link only)

1 This type is used primarily in specialized applications.
2 When using Data Link: Connected - datacomm idle

C-38 Interface Registers

Datacomm Registers (cont.)

NOTE

When the datacomm line is suspended, CLEAR, ABORT, or
RESET must be executed before the line can be reconnected.

Reset value - 0 if R on interface select code switch cluster is ON (1).

Control 12 Connects, initiates auto-dial sequence, and disconnects interface from
datacomm line (not supported on BASIC/UX).

Value Interpretation

0 Disconnected from datacomm line

1 Connected to datacomm line
(set DTR & RTS)

2 Start auto dial. (Followed by OUT-
PUT of telephone numbers)

Status 13 Returns current ON INTR mask (not supported on BASIC/UX)

Control13 Sets ON INTR mask! (not supported on BASIC/UX)

Data Link Protocol

Bit Value Enables interrupt when:

0 1 A full block is available in receive queue

1 2 Transmit queue is empty

2 4 Receive or transmit error detected

3 8 A modem line changed

4 162 No Activity timeout forced a discon-
nection

5 322 Lost Carrier or Connection timeout
caused a disconnection

1 If a CONTROL statement is used to access this register, the control block is placed in the outbound
queue. If the ENABLE INTR ... statement is used with a mask, the mask value is placed directly in the
control register, bypassing any queue delays.

2 If bits 4 and 5 are not set, the corresponding errors can be trapped by using an ON ERROR statement.

Interface Registers C-39

Datacomm Registers (cont.)

Async Protocol

Bit Value Enables interrupt when:

0 1 Data or control block available in re-
ceive queue

1 2 Prompt received from remote device

2 4 Framing or parity error detected in
incoming data

3 8 A modem line changed

4 161 No Activity timeout forced a discon-
nection

5 321 Lost Carrier or Connection timeout
caused a disconnection

6 64 End-of-line received

7 128 Break received

Reset value = 0

Status 14 Returns current Control Block mask (not supported on BASIC/UX)

Control 14 Sets Control Block mask. Control block information is queued sequentially
with incoming data as follows (not supported on BASIC/UX):

Bit Value Async Control Block Passed Data Link Control Block Passed

0 1 Prompt position Transparent /N ormal Mode2

1 2 End-of-line position ETX Block Terminator3

2 4 Framing and/or Parity error4 ETB Block Terminator3

3 8 Break received

Reset Value: o (Control Blocks disabled) 6 (ETX/ETB Enabled)

Bits 4, 5, 6, and 7 are not used.

1 If bits 4 and 5 are not set, the corresponding errors can be trapped by using an ON ERROR statement.

2 Transparent/Normal format identification control block occurs at the beginning of a given block of
data in the receive queue.

3 ETX and ETB Block Termination identification control blocks occur at the END of a given block of
data in the receive queue.

4 This control block precedes each character containing a parity or framing error.

C-40 Interface Registers

Datacomm Registers (cont.)

Status 15 Returns current modem line interrupt mask
(not supported on BASIC/UX).

Control15 Sets modem line interrupt mask. Enables an interrupt to ON INTR when
Bit 3 of Control Register 13 is set as follows (not supported on BASIC/UX):

Bit Value Modem Line to Cause Interrupt

a 1 Data Mode (Data Set Ready)
1 2 Receive Ready (Data Carrier Detect)

2 4 Clear-to-send

3 8 OCR1, Incoming Call (Ring Indica-
tor)

4 16 OCR2, Cable or adapter dependent

Reset Value= 0

Note that bit functions are the same as for STATUS register 7. Functions
shown are for male connector cable option for modem connections.

Status 16 Returns current connection timeout limit.

Control 16 Sets Attempted Connection timeout limit. Acceptable values: 1 thru
255 seconds. O=timeout disabled.
Reset Value=25 seconds

Status 17 Returns current No Activity timeout limit.

Control 17 Sets No Activity timeout limit.
Acceptable values: 1 thru 255 minutes. O=timeout disabled.
Reset Value=10 minutes (disabled if Async, non-modem handshake).

Status 18 Returns current Lost Carrier timeout limit.

Control 18 Sets Lost Carrier timeout limit in units of 10 ms.
Acceptable values: 1 thru 255. O=timeout disabled.
Reset Value=40 (400 milliseconds)

Interface Registers C-41

Datacomm Registers (cont.)

Status 19 Returns current Transmit timeout limit.

Control 19 Sets Transmit timeout limit (loss of clock or CTS not returned by modem
when transmission is attempted).
Acceptable values: 1 thru 255.0=timeout disabled.
Reset Value=10 seconds

Status 20 Returns current transmission speed (baud rate). See table for values. 1

Control 20 Sets transmission speed (baud rate) as follows: 1

Register Register
Value Baud Rate Value Baud Rate

0 External Clock 8 600
*1 50 9 1200
*2 75 10 1800
*3 110 11 2400
*4 134.5 12 3600
*5 150 13 4800
*6 200 14 9600
7 300 15 19200

* Async only. These values cannot be used with Data Link. These values set transmit

speed ONLY for Async; transmit AND receive speed for Data Link. Default value is

defined by the interface card configuration switches.

Status 21 Protocol dependent. Returns receive speed (Async) or GID address (Data
Link) as specified by Control Register 21 (not supported on BASIC lUX) .

Control 21 Protocol dependent. Functions are as follows: 1

Data Link: SetR Group IDentifier (GID) for terminal. Values 0 thru 26
correspond to identifiers @, A, B, ... Y, Z, respectively. Other
values cause an error. Default value is 1 ("A").

Async: Sets datacomm receiver speed (baud rate). Values and defaults
are the same as for Control Register 20.

1 For BASICjUX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

C-42 Interface Registers

Datacomm Registers (cont.)

Status 22 Protocol dependent. Returns DID (Data Link) or protocol handshake type
(Async) as specified by Control Register 22.1

Control 22 Protocol dependent. Functions are as follows: 1

Data Link: Sets Device IDentifier (DID) for terminal. Values are the same as
for Control Register 21. Default is determined by interface card
configuration switches.

Async: Defines protocol handshake type that is to be used.

Value Handshake type

0 Protocol handshake disabled

I ENQ/ ACK with desktop computer as the host

2 ENQ/ ACK, desktop computer as a terminal

3 DCl/DC3, desktop computer as host

4 DCl/DC3, desktop computer as a terminal

5 DCI/DC3, desktop computer as both host and
terminal

Status 23 Returns current hardware handshake type (not supported on BASIC/UX).

Control23 Sets hardware handshake type as follows (not supported on BASIC/UX):
O=Handshake OFF, non-modem connection.
l=FULL-DUPLEX modem connection.
2=HALF-DUPLEX modem connection.
3=Handshake ON, non-modem connection.
Reset Value is determined by interface configuration switches.

1 For BASICjUX information on this register, see Volume 2 of the BASIC/UX Interfacing Techniques
manual.

Interface Registers C-43

Datacomm Registers (cont.)

Status 24 Protocol dependent. Returns value set by preceding CONTROL statement
to Control Register 24 (not supported on BASIC/UX).

Control24 Protocol dependent. Functions as follows (not supported on BASIC/UX):

Status 25

Data Link protocol: Set outbound block size limit.

Value Block size Value Block size

0 512 bytes 4 8 bytes

1 2 bytes

2 4 bytes

3 6 bytes 255 510 bytes

Reset outbound block size limit=512 bytes

Async Protocol: Set mask for control characters included in receive data
message queue. Bit set: transfer character(s).
Bit cleared: delete character(s).

Bit set ' Value Character(s) passed to receive queue

0 1 Handshake characters (ENQ, ACK, DC1, DC3)

1 2 Inbound End-of-line character(s)

2 4 Inbound Prompt character(s)

3 8 NUL (CHR$(O))

4 16 DEL (CHR$(127))

5 32 CHR$(255)

6 64 Change parity/framing errors to underscores (_) if
bit is set.

7 128 Not used

Reset value=127 (bits 0 thru 6 set)

Returns number of received errors since power up or reset (not supported
on BASIC/UX).

Note

Control Registers 26 through 35, Status Registers 27 through
35, and Control and Status Registers 37 and 39 are used for
ASYNC protocol ONLY. They are not available during Data Link
operation.

C-44 Interface Registers

Datacomm Registers (cont.)

Status 26 Protocol dependent (not supported on BASIC/UX)

Data Link protocol: Returns number of transmit errors (NAKs received)
since last interface reset.

Async protocol: Returns first protocol handshake character (ACK or
DCl).

Control 26
(Async only)

Status 27
(Async only)

Control 27
(Async only)

Status 28
(A sync only)

Control 28
(Async only)

Status 29
(Async only)

Control 29
(Async only)

Sets first protocol handshake character as follows (not supported on
BASIC/UX):
6=ACK, l7=DCl. Other values used for special applications only.
Reset value=17
(DCl). Use ACK when Control Register 22 is set to 1 or 2. Use DCl
w hen Control Register
22 is set to 3, 4, or 5.

Returns second protocol handshake character (not supported on
BASIC/UX).

Sets second protocol handshake character as follows (not supported on
BASIC/UX):
5=ENQ, 19=DC3. Other values used for special applications only.
Reset value=19
(DC3). Use ENQ when Control Register 22 is set to 1 or 2. Use DC3
when Control Register
22 is set to 3, 4, or 5.

Returns number of characters in inbound End-of-line delimiter sequence
(not supported on BASIC/UX).

Sets number of characters in End-of-line delimiter sequence (not sup­
ported on BASIC /UX)
Acceptable values are 0 (no EOL delimiter), 1, or 2.
Reset Value=2

Returns first End-of-line character (not supported on BASIC/UX).

Sets first End-of-line character (not supported on BASIC/UX).
Reset Value=13 (carriage return)

Interface Registers C-45

Datacomm Registers (cont.)

Status 30
(Async only)

Control 30
(Async only)

Status 31
(Async only)

Control 31
(Async only)

Status 32
(Async only)

Control 32
(Async only)

Status 33
(Async only)

Control 33
(Async only)

Status 34
(Async only)

Control 34
(Async only)

Status 35
(Async only)

Control 35
(Async only)

Returns second End-of-line character (not supported on BASIC/UX).

Sets second End-of-line character (not supported on BASIC/UX).
Reset Value=10 (line feed)

Returns number of characters in Prompt sequence (not supported on
BASIC/UX).

Sets number of characters in Prompt sequence. Acceptable values are 0
(Prompt disabled), 1 or 2 (not supported on BASIC/UX).
Reset Value=1

Returns first character in Prompt sequence
(not supported on BASIC/UX).

Sets first character in Prompt sequence (not supported on BASIC/UX).
Reset Value= 17 (DC 1)

Returns second character in Prompt sequence
(not supported on BASIC/UX).

Sets second character in Prompt sequence
(not supported on BASIC/UX).
Reset Value=O (null)

Returns the number of bits per character.

Sets the number of bits per character as follows: 1

0=5 bits/character 2=7 bits/character
1=6 bits/character 3=8 bits/character)
When 8 bits/char, parity must be NONE, ODD, or EVEN.
Reset Value is determined by interface card default switches.

Returns the nur.nber of stop bits per character.

Sets the number of stop bits per character as follows: 1

0=1 stop bit 1=1.5 stop bits 2=2 stop bits
Reset Value: 2 stop bits if 150 baud or less, otherwise 1 stop bit.
Reset Value is determined by interface configuration switch settings.

1 For BASIC/UX information on this register. see Volume 2 of the BASIC/UX Interfacing Techniques

C-46 Interface Registers

Datacomm Registers (cont.)

Status 36

Control 36

Returns current Parity setting.

Sets Parity for transmitting and receiving as follows: 1

Data Link Protocol: O=NO Parity; Network host is HP 1000
Computer.
l=ODD Parity; Network host is HP 3000
Computer. Reset Value=O

Async Protocol: O=NONE; no parity bit is included with any
characters.

Status 37
(Async only)

Control 37
(Async only)

Status 38

Status 39
(Async only)

Control 39
(Async only)

l=ODD; Parity bit SET if there is an EVEN
number of "1" s in the character body.
2=EVEN; Parity bit OFF if there is an ODD
number of "1" s in the character body.
3= "0"; Parity bit is always ZERO, but parity
is not checked.
4="1"; Parity bit is always SET, but parity
is not checked.

Default is determined by interface configuration switches. If 8 bits per
character, parity must be NONE, ODD, or EVEN.

Returns inter-character time gap in character times (not supported on
BASICjUX).

Sets inter-character time gap in character times (not supported on
BASICjUX).
Acceptable values: 1 thru 255 character times.
O=No gap between characters. Reset Value=O

Returns Transmit queue status (not supported on BASICjUX).
If returned value=l, queue is empty, and there are no pending trans­
missions.

Returns current Break time (in character times) (not supported on
BASICjUX).

Sets Break time in character times (not supported on BASICjUX).
Acceptable values are: 2 thru 255. Reset Value=4.

1 For BASIC/UX information on this register, see Volume 2 of the BASICjUX Interfacing Techniques
manual.

Interface Registers C-47

Summary of Powerfail
Status and Control Registers

This section lists all STATUS and CONTROL registers of the Powerfail-Protection
Interface, which is permanently assigned to interface select code 5. This section does
not apply to BASICjUX.

STATUS Register 0

CONTROL Register 0

STATUS Register 1

Most Significant Bit

Bit 7 I Bit 6 I

Card Identification is always 5.

Shut Down. Any non-zero value written to this register will
turn off both battery and ac-line power to the computer, which
conserves battery power after the service routine has finished
responding to a powerfail. If ac-line power is on when this
statement is executed, the computer will be turned back on in
the normal power-up sequence.

Powerfail Interrupt Cause

Least Significant Bit

Bit 5 I Bit 4 I Bit 3 Bit 2 Bit 1 Bit 0

One Power Power
Not used Second Is Has

Left Back Failed

Value=128 I Value=64 I Value=32 I Value = 16 I Value=8 Value=4 Value = 2 Value = 1

Bit 2 - One Second Left indicates that approximately one second of battery power
remains. The computer will automatically power itself down, even if power is restored
before one second has expired.

Bit 1 - Power Is Back indicates that ac-line power has been restored.

Bit 0 - Power Has Failed indicates that ac-line power has failed (even though it may
be back now).

CONTROL Register 1 Not Used.

STATUS Register 2 Interrupt Mask has bit definitions identical to the preceding
register (Powerfail Interrupt Cause).

CONTROL Register 2 Not Used

C-48 Interface Registers

Powerfail Registers (cont.)

STATUS Register 3 Powerfail Status

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 I Bit 5 I Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Failed
One Currently Ac In the

Self-Test
Not used Second Using Is Powerfail

Left Battery Down State

Value = 128 Value=64 IValue=32 IValue=16 Value=8 Value=4 Value = 2 Value=l

Bit 7 - Failed Self Test indicates the outcome of the self test: a 1 indicates failure, and
o indicates successful results.

Bit 3 - One Second Left indicates that approximately one second of battery power
remains. The computer will automatically power itself down, even if power is restored
before one second has expired.

Bit 2 - Currently Using Battery indicates whether or not the battery is being used: 1
indicates it is currently being used for computer power, and 0 indicates that it is not.

Bit 1 - Ac Is Down indicates the current status of ac-line power: a 1 indicates that
ac power is completely gone. If bit 2 is a 1 and this bit is 0, the battery is being used
because ac power is not completely gone but has dropped below an acceptable level; in
this case, a "brown-out" condition is indicated.

Bit 0 - In the Powerfail State indicates whether or not the computer is currently in the
Powerfail State: a 1 indicates Powerfail State, and 0 indicates that the computer is not
currently in the Powerfail State. The Powerfail State is exited when power is back and
the Power Back Timer reaches the value of the Power Back Delay.

CONTROL Register 3 Not Used.

Interface Registers C-49

Powerfail Registers (cont.)
STATUS Register 4

CONTROL Register 4

STATUS Register 5

CONTROL Register 5

STATUS Register 6

CONTROL Register 6

STATUS Register 7

CONTROL Register 7

STATUS Registers 8
thru 71

CONTROL Registers 8
thru 71

Overheat Protection Timer contains the amount of battery
time used during this Powerfail State (in tens of milliseconds).
For every second the power is down, it must be back for two
seconds to ensure adequate cooling for the machine. Thus, the
value of this register bounds the maximum amount of time
that can be obtained from the battery, even though 60 seconds
may have been specified as the protection time (CONTROL
Register 6).

Not Used.

Power Back Timer contains the time elapsed since power was
restored after the last powerfail (ill tens of milliseconds).

Power Back Delay. The value of this register determines the
amount of time (in tens of milliseconds) that the computer will
delay, after power is back, before leaving the powerfail state
(i.e., before generating a "Power Is Back" interrupt). The
power-on default value is 50 (500 milliseconds).

Powerfail Timer contains the time elapsed since the last pow­
erfail (in tens of milliseconds).

Protection Time. The value of register determines the maxi­
mum amount of time (in tens of milliseconds) that the com­

puter is to have battery backup. Power-on default is 6000 (60
seconds).

Not Used.

Powerfail Delay Timer. The contents of this register determine
the amount of time (in tens of milliseconds) that the Powerfail­
Protection Interface will wait, after a powerfail, before gener­
ating a "Power Has Failed" interrupt. Power-on default is 10
(100 milliseconds).

Continuous-Memory Registers contain the 64 bytes of data
written by the last CONTROL statement directed to these
registers.

Continuous-Memory Registers. These sixty-four, single-byte
registers can be filled with any desired data, one byte (ASCII
character) per register.

C-50 Interface Registers

Summary of GPIO STATUS and CONTROL Registers

STATUS Register 0 Card Identification. Always 3.

CONTROL Register 0 Interface Reset. Any non-zero value causes a reset.

STATUS Register 1 Interrupt and DMA Status.

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 I Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Interrupts An
Interrupt Level Burst- Word- DMA DMA

Are
Interrupt

Switches Mode Mode Channell Channel 0
Enabled

Is Currently
(Hardware Priority) DMA DMA Enabled Enabled

Requested

Value=128 Value=64 Value=32 I Value=16 Value=8 Value=4 Value=2 Value=l

CONTROL Register 1 Set PCTL Line. Any non-zero value sets the line.

Interface Registers C-51

GPIO Registers (cont.)

STATUS Register 2

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Handshake Interrupts Transfer
a a a a a In Are In

Process Enabled Progress

~alue=128 Value=64 Value=32 Value = 16 Value=8 Value=4 Value=2 Value = 1

CONTROL Register 2 Peripheral Control

Most Significant Bit Least Significant Bit

Bit 7 ! Bit 6 I Bit 5 ! Bit 4 I Bit 3 Bit 2 Bit 1 Bit 0

PSTS Set CTL1 Set CTLO

Not used
Error (l=Low; (1=Low;
(l=Report; O=High) O=High)
O=Ignore)

lValue=128!Value=64!Value=32 !Value=16! Value=8 Value=4 Value=2 Value=l

C-52 Interface Registers

GPIO Registers (cont.)

STATUS Register 3 Data In (16 bits)

CONTROL Register 3 Data Out (16 bits)

STATUS Register" Interface Ready. Interface is Ready for a subsequent data
transfer: I=Ready, O=Busy.

STATUS Register 5 Peripheral Status

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

a a a a PSTS EIR STH STIO
Ok Line Low Line Low Line Low

Value = 128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

Interrupt Enable Register (EN ABLE INTR)

Most Significant Bit Least Significant Bit

Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 Bit 1 Bit 0

Enable Enable

Not used Interface EIR
Ready Interrupts
Interrupts

Value=128IValue=64 IValue=32 IValue=16 I Value=8 I Value=4 Value=2 Value=l

Interface Registers C-53

Summary of
BCD Status and Control Registers

This section does not apply to BASICjUX.

STATUS Register 0 Card Identification = 4.

CONTROL Register 0 Reset Interface (if non-zero value sent).

STATUS Register 1 Interrupt Status

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 I Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Interrupts
Interrupt Hardware Interrupt

are
Request Level Switches a a a a

enabled

Value=128 Value=64 Value=32 I Value = 16 Value=8 Value=4 Value=2 Value=l

CONTROL Register 1 Reset driver pointer (if non-zero value sent).

STATUS Register 2 Busy Bit

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 a a Handshake Interrupts a a a in progress Enabled

Value = 128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

Bit 0 is 1 when a handshake is currently in progress.

CONTROL Register 2 Request data by Setting CTLA and CTLB (if a non-zero value
is sent); this operation also clears an Interrupt Request (clears
bit 6 of Status Register 1).

C-54 Interface Registers

BCD Registers (cont.)

STATUS Register 3 Binary Mode: 1 if the interface is currently operating in Binary
mode, and 0 if in BCD mode.

CONTROL Register 3 Set Binary Mode: set Binary Mode if non-zero value sent, and
BCD Mode if zero sent.

STATUS Register 4 Switch and Line States

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OF DATA SGNl SGN2 OVLD SGNl SGN2 OVLD
Switch Switch Switch Switch Switch Input Input Input
Is ON Is ON Is ON Is ON Is ON Is True Is True Is True

Value=l28 Value=64 Value=32 Value=l6 Value=8 Value=4 Value=2 Value=l

CONTROL Register 4 Data Out Lines

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Set Set Set Set Set Set Set Set
DO-7 DO-6 DO-5 DO-4 DO-3 DO-2 DO-l DO-O
True True True True True True True True

Value=l28 Value=64 Value=32 Value=l6 Value=8 Value=4 Value=2 Value=l

Interface Registers C-55

BCD Registers (cont.)

STATUS Register 5 BCD Digits DIl and DI2

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DIl-8 DIl-4 DIl-2 DIl-1 DI2-8 DI2-4 DI2-2 DI2-1
IS IS is is is is IS is
True True True True True True True True

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

STATUS Register 6 BCD Digits DI3 and DI4

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DI3-8 DI3-4 DI3-2 DI3-1 DI4-8 DI4-4 DI4-2 DI4-1
is is is is is is is is
True True True True True True True True

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

STATUS Register 7 BCD Digits DI5 and DI6

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DI5-8 DI5-4 DI5-2 DI5-1 DI6-8 DI6-4 DI6-2 DI6-1
IS is is is is is IS is
True TnH' True Tru(' True True True True

Value = 128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value = 1

C-56 Interface Registers

BCD Registers (cont.)

STATUS Register 8 BCD Digits DI7 and DI8

Most Significant Bit Least Significant Bit

Bit 1 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DI7-8 DI7-4 DI7-2 DI7-1 DI8-8 DI8-4 DI8-2 DI8-1
is is is is is is is is
True True True True True True True True

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

STATUS Register 9 BCD Digits DIg and DIlO

Most Significant Bit Least Significant Bit

Bit 1 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DI9-8 DI9-4 DI9-2 DI9-1 DIlO-8 DIlO-4 DIlO-2 DIlO-l
is is is is is is is is
True True True True True True True True

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

Interface Registers C-57

Summary of EPROM Programmer
STATUS and CONTROL Registers

This section does not apply to BASIC/UX.

STATUS Register 0 ID Register. This register contains a value of 27 (decimal)
which is the ID of an EPROM Programmer card.

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 1 1 0 1 1

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value = 1

CONTROL Register 0 Interface Reset. Writing any non-zero value into this register
resets the card; writing a value of zero causes no action.

STATUS Register 1 Read Program Time. A value of 0 indicates that the program
time is 52.5 milliseconds for each 16-bit word (default); a non­
zero value indicates that the program time is 13.1 milliseconds.

CONTROL Register 1 Set Program Time. Writing a value of 0 into this register sets
the program time to 52.5 milliseconds for each 16-bit word;
any non-zero value sets program time to 13.1 milliseconds.

STATUS Register 2 Read Target Address. This register contains the offset address
(relative to the card's base address) at which the next word
of data will be read (via STATUS Register 3) or written (via
CONTROL Register 3). The default address is 0, which is the
address of the first byte on the card.

CONTROL Register 2 Set Target Address. Writing to this register sets the offset
address at which the next word of data will be read (via
STATUS Register 3) or written (via CONTROL Register 3).
The target address must always be an even number.

C-58 Interface Registers

EPROM Programmer Registers (cont.)

STATUS Register 3 Read Word at Target Address. This register contains the 16-
bit word at the current target address.

CONTROL Register 3 Write Word at Target Address. Writing a data word to this
register programs a 16-bit word at the current target address.
The target address must be set (via CONTROL register 2)
before every word is written. Automatic verification is also
performed after the word is programmed.

STATUS Register 4 Current Memory Card Capacity (in bytes). This register
contains the current capacity of a fully loaded card in bytes;
it also indirectly indicates which type of EPROM devices are
being used on the card. If 262144 is returned, then 27128
EPROMs are being used; if 131072 is returned, then 2764
devices are being used. A 0 is returned if the programmer
card is not currently connected to any EPROM memory card.

CONTROL Register 4 Undefined.

STATUS Register 5 Number of Contiguous, Erased Bytes. Reading this register
causes the system to begin counting the number of subsequent
bytes, beginning at the current target address, that are erased
(or are empty sockets). The counting is stopped when a
programmed byte (i.e., one containing at least one logical 0)
is found or when the end of the card is reached. If the byte
at the current target address is not FF, then a count of 0 is
returned. Error 84 is reported if the programmer card is not
currently connected to any EPROM card.

CONTROL Register 5 Undefined.

STATUS Register 6 Base Address of EPROM Memory Card. This register contains
the (absolute) base address of the EPROM memory card to
which the programmer card is currently connected; this base
address is also the absolute address of the first word on the
card. Error 84 is reported if the programmer card is not
currently connected to any EPROM memory card.

CONTROL Register 6 Undefined.

Interface Registers C-59

Parity, Cache, Float, and Clock
STATUS and CONTROL Registers
(Pseudo Select Code 32)

STATUS Register 0 Parity Checking for Memory Is Currently Enabled/Disabled

0= currently disabled;
1 = currently enabled

CONTROL Register 0 Enable/Disable Parity Checking for Memory (not supported
on BASIC/UX)

STATUS Register 1

0= disable;
1 = enable

External Cache Is Currently Enabled/Disabled

o = currently disabled;
1 = currently enabled

CONTROL Register 1 Enable/Disable External Cache
(not supported on BASIC/UX)

STATUS Register 2

0= disable;
1 = enable

Floating-Point Math Hardware Is Currently Enabled/Disabled
(HP 98635 Card or MC68881/68882 Co-Processor)

o = currently disabled;
1 = currently enabled

CONTROL Register 2 Enable/Disable Floating-Point Math

C-60 Interface Registers

(HP 98635 Card or MC68881/68882 Co-Processor)

0= disable:
1 = enable

Cache and Clock Registers (cont.)

STATUS Register 3 Internal MC68020/68030 Cache Is Currently
Enabled/Disabled

o = currently disabled;
1 = currently enabled

CONTROL Register 3 Enable/Disable Internal MC68020/68030 Cache
(not supported on BASIC/UX)

0= disable;
non-O = enable

Note

With computers that have a MC68030 processor, enabling or
disabling this internal cache also enables/disables the external
cache (since they are not independent). To determine which
processor you have, use SYSTEM$ ("SYSTEM ID"). A result of
S300:20 indicates you have a 68020, and S300:30 indicates a 68030
processor.

STATUS Register 4 Battery-Backed Clock Type

0= No battery-backed clock present;
1 = Series 200 (98270) battery-backed clock present;
2 = Series 300 (HP-HIL) battery-backed clock present

Interface Registers C-61

SRM Interface STATUS Registers

BASIC/UX supports SRM STATUS Registers 3 and 6. All other registers either cause
an error or return a value, depending on the current ERRORMODE setting (specified
on the rmb command line or in the configuration file). If ERRORMODE is off, then
STATUS Register 0 returns 52, and all other registers return o.

STATUS Register 0

STATUS Register 1

STATUS Register 2

STATUS Register 3

STATUS Register 4

STATUS Register 5

Card Identification

52 if the Remote Control switch (R) is set to 0 (closed):
180 if switch is set to 1 (open).

Interface Interrupts

l=interrupts enabled:
O=interrupts disahled.

Interface Busy

l=busy;
O=not busy.

Interface Firmware ID

Always 3 (the firmware ID of the SRM interface).

Not Implemented

Data Availability
O=receiver buffer empty;
l=receiver data available but no control blocks buffered:
2=receiver control blocks available but no data buffered;
3=both control blocks and data available.

C-62 Interface Registers

SRM Registers (cont.)

STATUS Register 6

STATUS Register 7

STATUS Register 8

STATUS Register 11

STATUS Register 12

Node Address of SRM Interface

Node address of the SRM interface installed in this computer
which is set to the specified select code. The range of node
addresses is 0 through 63.

eRe Errors

Total number of cyclic redundancy check (eRe) errors de­
tected by the interface since powerup or I Reset I (I RESET I).

Number of Buffer Overflows

Total number of times the receive buffer has overflowed since
powerup or I Reset I (I RESET I).

A vailable space

Amount of available space (number of bytes) in the transmit­
data buffer.

N umber of Retries

Number of transmission retries performed since powerup or
I Reset I (I RESET I).

EXT Signal Registers

STATUS Register 0

STATUS Register 1

STATUS Register 2

STATUS Register 32

Last un-caught EXT Signal 0

Status of EXT Signal 1
-l=Not catchable

O=Disabled
l=Disabled

Status of EXT Signal 2

Status of EXT Signal 32

Interface Registers C-63

Notes

C-64 Interface Registers

Table of Contents

Appendix D: Useful Tables
Option Numbers .. D-l
Interface Select Codes D-2
Display-Enhancement Characters D-3

Monochrome Enhancements .. D-3
Color Enhancements ... D-3

V.S. ASCII Character Codes .. D-4
V.S./European Display Characters. .. D-6
Katakana Display Characters .. D-12
Master Reset Table ... D-16
Graphic Reset Table .. D-19
Interface Reset Table. .. D-20
Second Byte of Non-ASCII Key Sequences (String) .. D-22
Selected High-Precision Metric Conversion Factors .. D-27

Useful Tables D
Option Numbers
These option numbers are displayed when ERROR 1 is reported.

Option Option
Number Binary Number Binary

1 BASIC Main 23 EPROM

2 GRAPH 24 HP 9885

3 GRAPHX 25 HPIB

4 10 26 FHPIB

5 BASIC Main 27 SERIAL

6 TRANS 28 GPIO

7 MAT 27 BCD

8 PDEV 30 DCOMM

9 XREF 31-40 Reserved

10 KBD 41 "U navailable"

11 CLOCK 42 CRTB

12 LEX 43 CRTA

13 BASIC Main 44 CRTC

14 MS 45 Reserved

15 SRM 46 COMPLEX

16 Compiler 47 CRTX

17 PCIB 1 48 EDIT

18 KNB2_0 49 Reserved

19 ERR 50 HFS

20 DISC 51 RMB

21 CS80 53 MUX

22 BUBBLE

This binary is included in the support software for the HP 98647 PC Instruments Interface. It is not
supplied with the BASIC 5.0 system.

Useful Tables D-l

Interface Select Codes
Internal Select Codes

Select
Code Device or Interface

1 Display (alpha)

2 Keyboard

3 Display (graphics)

4 Internal floppy-disc drive

5 Optional powerfail protection interface

6 Display (Graphics for bit mapped)/Windows

7 HP-IB interface (built-in)

Factory Presets for External Interfaces

Select
Code Device or Interface

8 HP-IB

9 RS-232

10 (not used)

11 BCD

12 GPIO

14 HP-IB "High-Speed" Disc Interface

20 Data Communications

21 Shared Resource Management

27 EPROM Programmer

28 RG B Color Video

30 Bubble Memory

32 Parity, Cache, Floating-point math
hardware, and battery-backed clock
(Pseudo Select Code)

33 EXT SIGNAL Registers

D-2 Useful Tables

Display-Enhancement Characters
Displaying these characters on the CRT (with OUTPUT CRT, PRINT, or DISP, etc.)
produce special effects.

Monochrome Enhancements
These characters produce special effects on most monochrome displays.

Character Action Resulting from
Code Displaying the Character

128 All enhancements off.

129 Inverse mode on.

130 Blinking mode on. *
131 Inverse and Blinking modes on. *
132 Underline mode on.

133 Underline and Inverse modes on.

134 Underline and Blinking modes on. *
135 Underline, Inverse, and Blinking modes on. *

* Blinking not available on bit-mapped alpha displays.

Color Enhancements
These characters change the alpha pen color on color displays.

Character Model 236C Bit-mapped
Code Display Alpha Display

136 White PEN 1
137 Red PEN 2
138 Yellow PEN 3
139 Green PEN 4
140 Cyan PEN 5
141 Blue PEN 6
142 Magenta PEN 7
143 Black PEN 0

CRT CONTROL registers 5 and 15 through 17 also provide a method of changing the
alpha color.

PRINTing CHR$(x) , where 136~x~143, will provide the same colors as on the Model 236C
as long as the color map contains default values and the alpha write-enable mask includes
planes 0 through 2. A user-defined color map which changes the values of pens 0 to 7
will change the meaning of CHR$ (x) .

Useful Tables D-3

u.s. ASCII Character Codes
ASCII EQUIVALENT FORMS

HP·IB ASCII EQUIVALENT FORMS HP·IB
Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

NUL 0 00000000 000 00 space 32 00100000 040 20 LAO

SOH 1 00000001 001 01 GTL I 33 00100001 041 21 LA1

STX 2 00000010 002 02 " 34 00100010 042 22 LA2

ETX 3 00000011 003 03 # 35 00100011 043 23 LA3

EOT 4 00000100 004 04 SOC $ 36 00100100 044 24 LA4

ENQ 5 00000101 005 05 PPC % 37 00100101 045 25 LA5

ACK 6 00000110 006 06 & 38 00100110 046 26 LA6

BEL 7 00000111 007 07 39 00100111 047 27 LA7

BS 8 00001000 010 08 GET (40 00101000 050 28 LA8

HT 9 00001001 011 09 TCT) 41 00101001 051 29 LA9

LF 10 00001010 012 OA * 42 00101010 052 2A LA10

VT 11 00001011 013 OB + 43 00101011 053 28 LA11

FF 12 00001100 014 OC 44 00101100 054 2C LA12

CA 13 00001101 015 00 - 45 00101101 055 20 LA13

SO 14 00001110 016 OE 46 00101110 056 2E LA14

SI 15 0000~111 017 OF / 47 001 011 ~ 1 057 2F LA15

QLE 16 00010000 020 10 0 48 00110000 060 30 LA16

DC1 17 00010001 021 11 LLO 1 49 00110001 061 31 LA17

DC2 18 00010010 022 12 2 50 00110010 062 32 LA18

DC3 19 00010011 023 13 3 51 00110011 063 33 LA19

DC4 20 00010100 024 14 DCL 4 52 00110100 064 34 LA20

NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21

SYNC 22 00010110 026 16 6 54 00110110 066 36 LA22

ETB 23 00010111 027 17 7 55 00110111 067 37 LA23

CAN 24 00011000 030 18 SPE 8 56 00111000 070 38 LA24

EM 25 00011001 031 19 SPD 9 57 00111001 071 39 LA25

SUB 26 00011010 032 'A 58 00· "010 072 3A LA26

ESC 27 00011011 033 1B 59 00111011 073 3B LA27

FS 28 00011100 034 1C 60 00111100 074 3C LA28

GS 29 00011101 035 10 = 61 00111101 075 3D LA29

AS 30 00011110 036 1E ? 62 00111110 076 3E LA30

US 31 00011111 037 1F ? 63 00111111 077 3F UNL

D-4 Useful Tables

u.s. ASCII Character Codes
ASCII EQUIVALENT FORMS HP-IB ASCII EQUIVALENT FORMS HP-IB
Char. Dec Binary Oct Hex Char. Dac Binary Oct Hex

@ 64 01000000 100 40 TAO 96 01100000 140 60 SCO

A 65 01000001 101 41 TAl a 97 01100001 141 61 SCI

B 66 OiOOOOlu 102 42 TA2 b 98 01100010 142 62 SC2

C 67 01000011 103 43 TA3 c 99 01100011 143 63 SC3

0 68 01000100 104 44 TA4 d 100 01100100 144 64 SC4

E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5

F 70 01000110 106 46 TA6 f 102 01100110 146 66 SC6

G 71 01000111 107 47 TA7 9 103 01100111 147 67 SC7

H 72 01001000 110 48 TA8 h 104 01101000 150 68 SC8

I 73 01001001 111 49 TA9 i 105 01101001 151 69 SC9

J 74 01001010 112 4A TA10 J 106 01101010 152 6A SClO

K 75 01001011 113 48 TAll k 107 01101011 153 68 SCll

L 76 01001100 114 4C TA12 I 108 01101100 154 6C SC12

M 77 01001101 115 40 TA13 m 109 01101101 155 60 SC13

N 78 01001110 116 4E TA14 n 110 01101110 156 6E SC14

0 79 01001111 117 4F TA15 0 111 01101111 157 6F SC15

P 80 01010000 120 50 TA16 P 112 01110000 160 70 SCt6

Q 81 01010001 121 51 TA17 q 113 01110001 161 71 SC17

R 82 01010010 122 52 TA18 r 114 01110010 162 72 SC18

S 83 01010011 123 53 TA19 5 115 01110011 163 73 SC19

T 84 01010100 124 54 TA20 t 116 01110100 164 74 SC20

U 85 01010101 125 55 TA21 u 117 01110101 165 75 SC21

V 86 01010110 126 56 TA22 v 118 01110110 166 76 SC22

W 87 01010111 127 57 TA23 w 119 01110111 167 77 SC23

X 88 01011000 130 58 TA24 x 120 01111000 170 78 SC24

y 89 01011001 131 59 TA25 V 121 01111001 171 79 SC25

Z 90 01011010 132 5A TA26 z 122 01111010 172 7A SC26

[91 01011011 133 58 TA27 { 123 01111011 173 78 SC27

" 92 01011100 134 5C TA28 I 124 01111100 174 7C SC28

1 93 01011101 135 50 TA29 } 125 01111101 175 70 SC29

. 94 01011110 136 5E TA30 - 126 01111110 176 7E SC30

- 95 01011111 137 5F UNT OEL 127 01111111 177 7F SC31

Useful Tables D-5

U.S./European Display Characters
These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A
display), 226, and 236 Computers.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

00000000 32 00100000 64 01000000 96 01100000

00000001 33 00100001 65 01000001 97 01100001

00000010 34 00100010 66 01000010 98 01100010

0000001 1 35 00100011 67 01000011 99 01100011

00000100 36 00100100 II 68 01000100 100 01100100

00000101 37 00100101 69 01000101 101 01100101

00000110 38 00100110 F 70 01000110 102 01100110

00000111 39 00100111 71 01000111 103 01100111

00001000 40 00101000 H 72 01001000 h 104 01101000

00001001 41 00101001 73 01001001 105 01101001

10 00001010 42 00101010 74 01001010 106 01101010

11 00001011 43 00101011 75 01001011 107 01101011

12 00001100 44 00101100 76 01001100 108 01101100

13 00001101 45 00101101 77 01001101 109 01101101

14 00001110 46 00101110 78 01001110 110 01101110

15 00001111 47 00101111 79 01001111 111 01101111

16 00010000 48 00110000 F' 80 01010000 112 01110000

[1 17 00010001 49 00110001 81 01010001 113 01110001

18 00010010 50 00110010 82 01010010 114 01110010

19 00010011 51 00110011 83 01010011 115 01110011

20 00010100 52 00110100 84 01010100 116 01110100

21 00010101 53 00110101 u 85 01010101 117 01110101

22 00010110 54 00110110 86 01010110 118 01110110

23 00010111 55 00110111 87 01010111 119 01110111

24 00011000 56 00111000 88 01011000 120 01111000

25 00011001 57 00111001 89 01011001 121 01111001

26 00011010 58 00111010 90 01011010 122 01111010

27 00011011 59 00111011 91 01011011 123 01111011

28 00011100 60 00111100 92 01011100 124 01111100

29 00011101 61 00111101 93 01011101 125 01111101

30 00011110 62 00111110 94 01011110 126 01111110

31 00011111 63 00111111 95 01011111 127 01111111

D-6 Useful Tables

U.S./European Display Characters
These characters can be displayed on the alpha screens of Models 216,220 (with a 98204A
display), 226, and 236 Computers.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

128 iOOOOOOO i6G 10100000 192 i iOOOOOO 224 11100000

129 10000001 A 161 10100001 193 11000001 A 225 11100001

130 10000010 A 162 10100010 194 11000010 226 11100010

131 10000011 E 163 10100011 195 11000011 II 227 11100011

132 10000100 E 164 10100100 196 11000100 228 11100100

133 10000101 E 165 10100101 197 11000101 229 11100101

134 10000110 166 10100110 198 11000110 230 11100110

135 10000111 167 10100111 199 11000111 231 11100111

136 10001000 168 10101000 200 11001000 232 11101000

137 10001001 169 10101001 201 11001001 233 11101001

138 10001010 170 10101010 202 11001010 234 11101010

139 10001011 171 10101011 203 11001011 235 11101011

140 10001100 172 10101100 204 11001100 236 i 1 101100

141 10001101 173 10101101 205 11001101 u 237 11101101

142 10001110 u 174 10101110 206 11001110 238 11101110

143 10001111 175 10101111 207 11001111 239 11101111

144 10010000 176 10110000 A 208 11010000 'y' 240 11110000

145 10010001 \' 177 10110001 209 11010001 241 11110001

146 10010010 178 10110010 210 11010010 242 11110010

147 10010011 179 10110011 It 211 11010011 243 11110011

148 10010100 180 10110100 212 11010100 244 11110100

149 10010101 181 10110101 213 11010101 245 11110101

150 10010110 182 10110110 214 11010110 246 11110110

151 10010111 183 10110111 215 11010111 247 11110111

152 10011000 184 10111000 A 216 11011000 248 11111000

153 10011001 185 10111001 217 11011001 249 11111001

154 10011010 186 10111010 218 11011010 250 11111010

155 10011011 £ 187 10111011 219 11011011 251 11111011

156 10011100 188 10111100 220 11011100 252 11111100

157 10011101 189 10111101 221 11011101 253 11111101

158 10011110 190 10111110 222 11011110 254 11111110

159 10011111 191 10111111 o 223 11011111 255 11111111

Note 1: Characters 128 thru 135 produce hlghhghts on machines With monochrome highlights when used in PRINT and DISP statements
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements

Useful Tables D-7

U.S./European Display Characters
These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
98204B display), and 237 computers, and on Series 300 computers using a 98546 Display
Compatibility Interface or 98700 Display Controller.

ASCII

Num Chr, Num. Chr. Num, Chr. Num, Chr,

0 N 32 64 @ 96 u
1 Ii 33 65 A 97 a H

2 5 34 .. 66 B 98 b x
3 E 35 # 67 C 99 c x
4 '\- 36 $ 68 D 100 d
5 E 37 " 69 E 101 e Q

6 PI 38 & 70 F 102 f I(

7 (\ 39 71 G 103 9
8 • 40 (72 H 104 h 5

9 H 41) 73 I 105 i T

10 L 42 * 74 J 106 j F

11 v 43 + 75 K 107 k T

12 f,. 44 76 L 108 1
13 c 45 77 M 109 m R

14 ~ 46 78 N 110 n
15 • 47 / 79 0 111 0 I

16 0 48 0 80 P 112 P L

17 0, 49 1 81 Q 113 q
18 ~ 50 2 82 R 114 r-
19 ~ 51 3 83 S 115 s
20 '1 52 4 84 T 116 t
21 N 53 5 85 U 117 u I(

22 • 54 6 86 V 118 v y

23 \ 55 7 87 ~ 119 w
24 c 56 8 88 X 120 x N

25 E 57 9 89 Y 121 Y M

26 \ 58 90 Z 122 z
27 ~ 59 91 [123 {

28 r. 60 < 92 , 124 I
29 \ 61 • 93] 125 }

30 'l 62 > 94 126
31 " 63 ? 95 127 •

D-8 Useful Tables

U.S./European Display Characters
These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with
98204B display), and 237 computers, and on Series 300 computers using a 98546 Display
Compatibility Interface or 98700 Display Controller.

ASCII

Num. Chr. Num. Chr. Num. Chr. Num. Chr.

128 c 160 192 a 224 A L

129 I 161 " 193 ~ 225 X v

130 6 162 A 194 0 226 I G

131 I 163 E 195 0 227 D 6

132 u 164 !; 196 a 228 d J.

1'33 I 165 it 197 e 229 :f: .!.!

134 6 166 :t 198 6 230 :t Ji

135 I 167 :t 199 U 231 0 .!.!

136 w 168 200 ~ 232 a H

137 R 169 201 e 233 0 0

138 y 170 202 0 234 (5
E

139 G 171 203 U 235 S R

140 c 172 204 a 236 s y

141 6 173 U 205 e 237 u u
142 M 174 0 206 6 238 y

G

143 6 175 £ 207 U 239 Y K

144 9 176 208 A 240 P 0

145 9 177 6 209 i 241 P 1 1

146 9 178 6 210 0 242 F
2 2 2

147 9 179 211 1t 243 F
3 3

148 9 180 C; 212 a 244 F
1I 1I

149 9 181 ~ 213 i 245 I
5 0

150 9 182 ~ 214 g) 246 6

151 9 183 i'\ 215 a: 247 * 7

152 9 184 216 A 248 t 8

153 9 185 l 217 1. 249 A-
9

154 9 186 tl 218 a 250 ~
A

155 9 187 £ 219 0 251 « 6

156 9 188 ¥ 220 E 252 • c
157 9 189 § 221 i 253 » 0

158 9 190 f 222 a 254 ± E

159 9 191 ¢ 223 0 255 ~ F

Useful Tables D-9

U.S./European Display Characters
These characters can be displayed on the screen of Series 300 computers (except with
a 98546 Display Compatibility Interface or 98700 Display Controller; see the preceding
table).

ASCII

Num Chr. Num. Chr. Num. Chr. Num. Chr.

0 N 32 64 @ 96 u
1 s 33 65 A 97 a H

2 !Ii 34 II 66 B 98 b x
3 E 35 # 67 C 99 c x
4 \ 36 $ 68 D 100 d
5 E 37 \ 69 E 101 e Q

6 A 38 & 70 F 102 f I.(

7 (\ 39 71 G 103 9
8 8 40 (72 H 104 h !ii

9 H 41) 73 I 105 i T

10 L 42 * 74 J 106 j F

11 v 43 + 75 K 107 1< T

12 ff 44 76 L 108 1
13 c 45 77 M 109 m R

14 ~ 46 78 N 110 n
15 • 47 / 79 0 111 0 I

16 0 48 0 80 P 112 P L

17 0, 49 1 81 Q 113 q
18 ~ 50 2 82 R 114 r
19 ~ 51 3 83 S 115 s
20 'a 52 4 84 T 116 t
21 N 53 5 85 U 117 u I.(

22 Ii 54 6 86 V 118 v y

23 .. 55 7 87 \'f 119 w
24 ~ 56 8 88 X 120 x
25 E 57 9 89 Y 121 Y H

26 , 58 90 Z 122 z
27 ~ 59 ; 91 [123 {

28 r. 60 < 92 " 124 I
29 \ 61 • 93] 125 }

30 fill 62 > 94 126 •
31 " 63 ? 95 127 •

D-IO Useful Tables

U.S./European Display Characters
These characters can be displayed on the screen of Series 300 computers (except with
a 98546 Display Compatibility Interface or 98700 Display Controller; see the preceding
table).

ASCII

NUlT!. Chr. Num. Chr. Num. Chr. Num. Chr.

128 c 160 192 a 224 A L

129 I 161 " 193 ~ 225 J. v
130 B 162 A 194 0 226 a G

131 I 163 E 195 Q 227 D B

132 u 164 !: 196 a 228 d .J.

133 I 165 it 197 e 229 :f: .!.!
134 B 166 t 198 6 230 :t Ji
135 I 167 :t 199 U 231 0 .!.!

136 w 168 200 ~ 232 0 H

137 R 169 201 e 233 0 0

138 y 170 202 0 234 0 E

139 G 171 203 U 235 S R

140 c 172 204 a 236 s y

141 B 173 U 205 e 237 u u
142 M 174 0 206 6 238 y G

143 B 175 (207 U 239 Y K

144 8 176 208 A 240 P 0

145 8 177 v 209 t 241 P 1

146 8 178 y 210 0 242 2

147 8 179 211 It 243 11 3

148 8 180 9 212 a 244 • LI

149 8 181 9 213 f 245 I
5 0

150 9 182 ~ 214 f1I 246 6

151 8 183 Pi 215 a: 247 i 7

152 8 184 216 A 248 t 8

153 8 185 l 217 l 249 a.
8

154 8 186 tl 218 a 250 ~ A

155 8 187 £ 219 0 251 « B

156 8 188 ¥ 220 E 252 • c
157 8 189 § 221 1 253 » 0

158 8 190 f 222 a 254 ± E

159 8 191 ¢ 223 0 255 ~ F

Useful Tables D-ll

Katakana Display Characters
These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

00000000 32 00100000 ~ 64 01000000 96 01,00000

00000001 33 00100001 •. , 65 01000001 ~ 97 0,10000,

00000010 34 00100010 66 01000010 98 01100010

00000011 35 00100011 67 01000011 99 01,000, ,

>.:,. 00000100 36 00100100 68 01000100 100 01100,00

~ 00000101 37 00100101 69 01000101 ,0, 0,10010,

00000110 38 00100110 70 01000110 ,02 01100,10

000001 11 39 00100111 71 01000111 ,03 0, ,00",

E,' 00001000 40 00101000 72 01001000 104 01101000

",. 00001001 41 00101001 73 01001001 105 0, ,0,001

10 00001010 42 00101010 74 01001010 106 01101010

11 00001011 43 00101011 75 01001011 107 01,01011

FF 12 00001100 44 00101100 76 01001100 ,08 0,101,00

13 00001101 45 00101101 77 01001101 109 01,0,101

14 00001110 46 00101110 78 01001110 1 ,0 0, ,0, 110

15 00001111 47 00101111 79 0100", , 1,1 01101111

16 00010000 48 00110000 ::. 80 01010000 ,,2 01110000

17 00010001 49 00110001 81 0,0
'
000 '

113 01110001

18 00010010 50 00110010 82 0, 0, 00, 0 "4 01110010

19 00010011 51 00110011 83 0101001, 115 01110011

", 20 00010100 52 00110100 84 0,0,0,00 116 0",0,00

21 00010101 53 00110101 85 01010101 '-j 117 01110101

22 00010110 54 00110110 86 010,0110 1,8 01110110

23 00010111 55 00110111 87 0,0,0,11 119 01110111

24 00011000 56 00111000 88 0'0"000 120 01111000

ir.; 25 00011001 57 00111001 89 0,0,100, 121 01111001

26 00011010 58 00111010 ~ 90 0,0"0,0 122 01111010

27 00011011 : 59 00111011 91 010,1011 123 01111011

28 00011100 60 00111100 '" 92 010,,100 124 01111100

(f 29 00011101 61 00111101 93 01011,01 125 01111101

30 00011110 62 00111110 94 010'" ,0 126 01111110

31 00011111 63 00111111 -- 95 0,0", " 127 01,11111

D-12 Useful Tables

Katakana Display Characters
These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236
computers, and on Series 300 computers using a 98546 Display Compatibility Interface.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

128 10000000 160 10100000 192 11 000000 224 11100000

129 10000001 161 10100001 193 11000001 225 11100001

130 10000010 162 10100010 194 11000010 226 11100010

131 10000011 163 10100011 195 11000011 227 11100011

132 10000100 164 10100100 196 11000100 228 11100100

133 10000101 165 10100101 197 11000101 229 11100101

134 10000110 166 10100110 198 11000110 230 11100110

135 10000111 167 10100111 199 11000111 231 11100111

136 10001000 168 10101000 200 11001000 232 11101000

137 10001001 169 10101001 201 11001001 233 11101001

138 10001010 170 10101010 202 11001010 234 11101010

139 10001011 171 10101011 203 11001011 235 11101011

140 10001100 172 10101100 204 11001100 236 11101100

141 10001101 173 10101101 205 11001101 237 11101101

142 10001110 174 10101110 206 11001110 238 11101110

143 10001111 175 10101111 207 11001111 239 11101111

144 10010000 176 10110000 208 11010000 240 11110000

145 10010001 177 10110001 209 11010001 241 11110001

146 10010010 178 10110010 210 11010010 242 11110010

147 10010011 179 10110011 211 11010011 243 11110011

148 10010100 I 180 10110100 212 11010100 244 11110100

149 10010101 1 181 10110101 ~ 213 11010101 245 11110101

150 10010110 11 182 10110110 214 11010110 246 11110110

151 10010111 183 10110111 215 11010111 247 11110111

152 10011000 .:J 184 10111000 216 11011000 248 11111000

153 10011001 185 10111001 217 11011001 249 11111001

154 10011010 186 10111010 l··· 218 11011010 250 11111010

155 10011011 187 10111011 o 219 11011011 251 11111011

156 10011100 188 10111100 220 11011100 252 11111100

157 10011101 189 10111101 221 11011101 f,. 253 11111101

158 10011110 190 10111110 222 11011110 254 11111110

159 10011111 191 10111111 223 11011111 255 11111111

Note 1: Characters 128 thru 135 produce highlights on machines with monochrome highlights when used in PRINT and D1SP statements
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements

Useful Tables D-13

Katakana Display Characters
These characters can be displayed on the Model 237 and on all Series 300 bit-mapped
alpha displays.

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary

00000000 32 00100000 :;:; 64 01000000 96 01100000

00000001 33 00100001 65 01000001 97 01100001

00000010 34 00100010 66 01000010 98 01100010

0000001 , 35 0010001 I 67 01000011 99 0110001 I

00000100 36 00100100 68 01000100 100 01100100

", 00000101 37 00100101 69 01000101 101 01100101

000001 I a 38 00100110 70 01000110 102 01100110

000001 I I 39 001001 I 1 71 0100011 I 103 0"0011 I

E:~ 00001000 40 00101000 72 01001000 104 01101000

00001001 41 00101001 73 01001001 105 01101001

4- 10 00001010 42 00101010 74 01001010 106 01101010

0000101 I 43 0010101 I 75 01001011 107 01101011

iF 12 00001 lOa 44 00101100 76 01001100 108 01101100

13 00001 101 45 00101101 77 01001101 109 01101101

14 00001 I 10 46 00101 I 10 78 01001110 110 011011 10

15 00001111 47 0010111 I 79 01001 I II 111 01101111

16 00010000 48 00110000 80 01010000 112 01110000

17 00010001 49 00110001 81 01010001 113 01 I 10001

18 00010010 50 00110010 82 01010010 114 01 I 10010

19 00010011 51 0011001 I 83 0101001 I 115 01 I 10011

20 00010100 0 52 00110100 84 01010100 116 01110100

21 00010101 53 00110101 85 01010101 ,; 117 01110101

22 00010110 54 00110110 86 01010110 118 01110110

23 00010111 55 00110111 87 010101 I I 119 01 I 10111

24 00011000 56 00111000 88 alai 1000 120 01 I I 1000

25 00011001 57 00111001 89 01011001 121 01 I 11001

26 0001 lOla 58 00111010 90 01011010 122 0111 lOla

27 00011011 59 OO~1~O~~ 91 0 1 0 11 0 1 1 123 011110' 1

28 00011 100 60 00111100 92 0101 1100 124 01 I 11100

29 0001 I 101 61 001 I 1 101 93 0101 I 101 125 011 I 1 101

30 00011 I 10 62 00111 I 10 94 01011 I 10 126 01 I 11110

31 000111 I I 63 001 I 1 11 I 95 0101 I I I I 127 011111 I 1

D-14 Useful Tables

Katakana Display Characters
These characters can be displayed on the Model 237 and on all Series 300 bit-mapped
alpha displays.

ASCII EQUIVALENT FORMS

Char. Dec

C
L

8
G

u
.L

I
~

" .Ii

I
~

W
H

R
o

y
E

G
R

c
y

" u

" K

9
o

9
a

9
5

9
6

9
8

9
9

9
A

9
8

9
C

9
E

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Binary

10000000

10000001

10000010

10000011

10000100

10000101

10000110

10000111

10001000

10001001

10001010

10001011

10001100

10001101

10001110

10001111

10010000

10010001

10010010

10010011

10010100

10010101

10010110

10010111

10011000

10011001

10011010

10011011

10011100

10011101

10011110

10011111

ASCII EQUIVALENT FORMS

Binary

160 10100000

161 10100001

162 10100010

163 10100011

164 10100100

165 10100101

166 10100110

167 10100111

168 10101000

169 10101001

170 10101010

171 10101011

172 10101100

173 10101101

174 10101110

175 10101111

176 10110000

177 10110001

178 10110010

179 10110011

I 180 10110100

181 10110101

182 10110110

183 10110111

184 10111000

185 10111001

186 10111010

187 10111011

188 10111100

189 10111101

190 10111110

191 10111111

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS

Char. Dec Binary Char. Dec Binary

192 11000000 224 11100000

193 11000001 225 11100001

194 11000010 226 11100010

195 11000011 227 11100011

196 11000100 228 11100100

197 11000101 229 11100101

198 11000110 230 11100110

199 11000111 231 11100111

200 11001000 232 11101000

201 11001001 233 11101001

202 11001010 234 11101010

203 11001011 235 11101011

204 11001100 236 11101100

205 11001101 237 11101101

206 11001110 238 11101110

207 11001111 239 11101111

208 11010000 240 11110000

209 11010001 241 11110001

210 11010010 242 11110010

211 11010011 243 11110011

212 11010100 244 11110100

~ 213 11010101 10 245 11110101

214 11010110 246 11110110

215 11010111 247 11110111

216 11011000 248 11111000

il· 217 11011001 249 11111001

218 11011010 250 11111010

219 11011011 251 11111011

220 11011100 • 252 11111100

221 11011101 253 11111101

222 11011110 254 11111110

223 11011111 255 11111111

Note 1: Characters 128 thru 135 produce highlights on machines with monochrome highlights when used in PRINT and DISP slatements
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements

Useful Tables D-15

Master Reset Table

CRT

CRT DISP line

CRT Display Functions

CRT Message line

CRT Input line (Note 61

CRT Printout Area

CRT Print Position (TABXYI

ALPHA ON/OFF (Note 31

KEYBOARD

Keyboard Recall Buffer

Keyboard Result Buffer

Keyboard Knob Mode

Tabs On Input line

Typing Aid Labels

Keyboard Katakana Mode

SUSPEND INTERACTIVE

PRINTING

Print column

PRINTALL

PRINTALL IS

PRINTER IS

ENVIRONMENTS & VARIABLES

Allocated Variables

Normal Variables

COM Variables

OPTION BASE

1i0 Path Names

LO Path Names in COM

Keyboard Variable Access

BASIC Program lines

BASIC Program Environment

Normal Binary Programs

SUB Stack

NPAR

CONTINUE Allowed

ON <event> ACTIONS

ON <event> Log

System Priority

ON KEY Labels

ENABLE/DISABLE

KNOBX & KNOBY

ON EXT SIGNAL

Note 2

Power RESET END LOAD LOAD GET GET

On

Clear Clear Clear

Off Off

Ready Clear Clear Clear Reset

Clear Clear Clear

Clear Clear

1.1 1.1

On On

Clear

Empty Empty

None None

Note 16 Note 16

Off

Off

Off

Off

Off

Off

On

Off

Off

On

Off

Clear

Note 15

On

Off

Off

Off

STOP &Go &Go

On

Off Off Off Off Off

None None None None Note 1 Note 1 None None None None

None None None None

None None None

None None None None

Note 9

Note 9

Note 9

Note 9

None Closed Closed Closed None Closed Closed Closed Closed Closed

None Closed Closed None Note 10 Note 10 Note 10 Note 10

Main SUB SUB

Prerun Entry Exit

Clear

Off

None None Pre-ent

Note 11 Note 11 Pre -ent

Note 9 Note 9 Pre-ent

Closed sub clsd

No No No No Main Main No In cnt No In cn!. In cnt Main SUB Pre-ent

None None None Note 4 Note 4 Note 4 Note 4 Note 4

Main Main Main Main Main Main Main Main Main Main

None None Note 5 Note 5

Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear

No No No No No No No Yes No Yes Yes

Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty

None None None None None None None None None None

Enable Enable Enable Enable Enable Enable Enable Enable Enable Enable

Dflt Dflt Dflt Dflt DfI! Dflt

Main SUB Pre-ent

Clear Push Pop

Acrual Pre -en!

Yes Yes Yes

Empty Note 8 Note 8

Note 7 Pre-ent

None Pre-ent

Enable

Dflt Note 8 Note 8

Note 20: For SRM files. RESET closes the file. For LIF and HFS files. RESET removes the I/O path name. but does not close

the file. All other I/O path names at RESET are removed without any other action.

D-16 Useful Tables

V> V>
()

V>
() r

~ () ~ Note 2 0
Power -I ~ -I RESET ENDI LOAD LOAD GET GET

J>
Main SUB SUB () () 0

:r: -I :r: V>
() C

On J> :r: () STOP &Go &Go c:l Prerun Entry Exit

MISe.

GOSUB Stack Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Clear Local Pre-ent

TIMEDATE Note 14

ERRL. ERRN. and ERRDS

ERH,Va$ Nun Null Null Nun Nun

DATA Pointer None None None None None None None 1st main None 1st main 1st main 1st sub Pre-ent

LEXICAL ORDER IS Stand. Stand.

MASS STORAGE IS Note 12 Note 12

CHECKREAD ONIOFF Off Off

Angle Mode RAD RAD RAD RAD RAD RAD RAD RAD RAD Pre-ent

Random Number Seed Note 13 Note 13 Note 13 Note 13 Note 13 Note 13

DET

TRANSFER None Aborts Note 17 Waits Aborts Waits None Note 18 None Waits None Note 19

TRACE ALL Off Off Off

- = Unchanged

Pre-ent = As existed previous to entry into the subprogram.

In cnt. = Access to variables in current context only.

1st main = Pointer set to first DATA statement in main program.

1st sub = Pointer set to first DATA statement in subprogram.

sub c1sd = All local I/O path names are closed at subexit.

Waits = Operation waits until TRANSFER completes.

Note 1: Only those allocated in the main program are available.

Note 2: Pressing the STOP key is identical in function to executing STOP. Editing or altering a paused program causes the program to go

into the stopped state.

Note 3: Alpha is turned on automatically by typing on the input line, by writing to the display line, or by an output to the message line.

Note 4: Modified according to the statement or command parameters and file contents.

Note 5: Any new binary programs in the file are loaded.

Note 6: Includes cursor poSition, INS CHR mode, ANY CHAR sequence state, but not tabs, auto-repeat rate, and auto-repeat delay.

(These last three are defaulted only at SCRATCH A and Power On.)

Note 7: The system priority changes at SUB entry if the subroutine was invoked by an ON <event> CALL.

Note 8: See the appropriate keyword.

Note 9: As specified by the new environment or program.

Note 10: A COM mismatch between programs will close I/O path names. If I/O path names exist in a labeled COM, and a LOAD or GET

brings in a program which does not contain that labeled COM, those I/O path names are closed.

Note 11: Numeric variables are set to 0, and string lengths are set to O.
Note 12: The default mass storage device is INTERNAL (the right-hand drive) on the 9826 and 9836. See the 9816 Installation Manual for

information on its default mass storage device.

Useful Tables D-17

Further Comments
Note 13: The default random number seed is INT(pI x (231

- 2)/180). This is equal to 37480660.

Note 14: The default TIMEDATE is 2.08662912 E+ 11 (midnight March 1, 1900, Julian time)

Note 15: After a RESET, the CRT print position is in column one of the next line below the print position before the RESET.

Note 16: Typing aid labels are displayed unless a program is in the RUN state.

Note 17: Operation waits until TRANSFER completes unless both I/O path names are in COM.

Note 18: Operation waits until TRANSFER completes unless both 1/0 path names are in a COM area preserved during the LOAD.

Note 19: Operation waits until TRANSFER completes if the TRANSFER uses a local I/O path name.

The PAUSE key, the programmed PAUSE statement. and executing PAUSE from the keyboard all have identical effects. The only

permanent effects of the sequence '·PAUSE. .. CONTINUE·· on a running program are'

1. Delay in execution.

2. Second and subsequent interrupt events of a given type are ignored

3. INPUT, LINPUT, and ENTER 2 statements will be restarted.

4. ON KEY and ON KNOB are temporarily deactivated (i.e. not logged or executed) during the pause.

5. A TRANSFER may complete during the pause, causing ON EOT to be serviced at the next end-of-line.

Fatal program errors (i.e. those not trapped by ON ERROR) have the following effects:

- a PAUSE

- a beep

- an error message in the message line

- setting the values of the ERRL. the ERRN. and possibly the ERRDS functions

- setting the default EDIT line number to the number of the line in which the error occurred.

Autostart is equivalent to: Power On. LOAD "AUTOST". RUN.

CLR 10 terminates ENTER and OUTPUT on all interfaces. handshake setup operations. HP-IB control operations. DISP. ENTER

from CRT or keyboard. CAT, LIST. external plotter output. and output to the PRINTER IS. PRINTALL IS. and DUMP DEVICE IS

devices when they are external. CLR 10 does not terminate CONTROL. STATUS, READIO, WRITEIO. TRANSFER real-time clock

operations. mass storage operations (other than CATl. OUTPUT 2 (keyboard). or message line output.

CLR 10 clears any pending closure key action.

If CLR 10 is used to abort a DUMP GRAPHICS to an external device. the external device may be in the middle of an escape-code

sequence. Thus, it might be counting characters to determine when to return to normal mode (from graphics mode). This means that a

subsequent 110 operation to the same device may yield "strange" results. Handling this situation is the responsibility of the user and is

beyond the scope of the firmware proVided with the product. Sending 75 ASCII nulls is one way to "clear" the 9876 Graphics Printer.

D-18 Useful Tables

Graphic Reset Table
(f, (f,
()

(f,
()

~ () ~ Note 2

Power -l ~ -l RESET END GINIT Main () ()
:r: -l :r: ()

On » :r: () STOP Prerun

PLOTTER IS CRT CRT CRT CRT

Graphics Mpmnn) rlPilr (:IPilr Note 1 Note 1

VIEWPORT hrd clip hrd clip hrd clip hrd clip

X and Y Scaling (unit of measure 1 GDU GDU GDU GDU

Soft Clip hrd clip hrd clip hrd clip hrd clip

Current Clip hrd clip hrd clip hrd clip hrd clip

CLIP ON OFF Off Off Off Off

PIVOT

AREA PEN

PEN

LINE TYPE 1.5 1.5 1.5 1.5

Pen Position 0.0 00 0.0 D.O

LORG

CSIZE 5 .. 6 5.6 5 .. 6 5.6

LDIR

PDIR

GRAPHICS ON OFF Off Oft

ALPHA ON OFF (Note 31 On On On On On On

DUMP DEVICE IS 701 701

GRAPHICS INPUT IS None None None None

TRACK ON OFF Off Off Off Off

Color Map (Note 41 Off Off Note 5 Note 5

Drawing Mode Norm Norm Norm Norm

- = Unchanged

hrd clip = The default hard clip boundaries of the CRT.

Note 1: Although RESET leaves the graphics memory unchanged. it will be cleared upon execution of the next graphics statement that sets

a default plotter following the RESET.

Note 2: Pressing the STOP key is identical to executing STOP. Altering a paused program causes the program to go into the stopped state.

Note 3: Alpha is turned on automatically by typing on the input line. by writing to the display line. or by an output to the message line.

Note 4: With color map off. 8 standard colors are available. With color map on. 16 user-defined colors are available. See PLOTTER IS.

Note 5: Although the color map remains unchanged. it is changed if a graphics statement selects the device as a default plotter.

Useful Tables D-19

Interface Reset Table

~ Note 5 Note 6

Power ~ BASIC END LOAD GET Reset Main SUB SUB CLR
n

On :r: RESET STOP Cmd Prerun Entry Exit [10

GPIO Card

Interrupt Enable Bit

Active nmeout Counter

Enable Interrupt Mask

Hardware Reset of Card (PRESET)

PSTS Error Rag

RS-232 Card

Interrupt Enable Bit

Active Timeout Counter

Enable Interrupt Mask

Hardware Reset of Card

Data Rate/Character Format

RTS-DTR Latch

Request to Send Line

Data Terminal Ready Line

Line Status Register

Modem Status Register

Data-In Buffer

Error Pend. Rag

HP-IB

Interrupt Enable Bit

Active Timeout Counter

Interrupt Enable Mask

User Interrupt Status

Serial Poll Register

Parallel Poll Register

My Address Register

IFC Sent

REN Set True

Data Communications

Interrupt Enable Bit

Active Timeout Counter

Interrupt Enable Mask

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Reset Note 1 Note 1 Reset Note 1 Note 1 Note! Reset Note 1

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Reset Reset Reset Reset

Swtch Swtch

Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Empty Empty Empty Empty Empty Empty Empty Empty Empty

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear

Clear Clear

Note 4 Note 4

Note 3 Note 3

Note 3 Note 3

Clear

Clear

Note 3

Note 3

Clear

Clear

Note 3

Note 3

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear

Clear Clear Clear Clear Clear Clear Clear Clear Clear

Hardware Reset of Card Reset Note 7 Reset Note 7

Line State Dscon Oscar Oscon Dscon

Data Buffers Empty Empty' Empty Empty

Protocol Selection (Async or Data Link) Swtch Note 8 Swtch Note 8

Protocol Options Swtch S",'!ch Swtch Swtch

D-20 Useful Tables

Note 1

Note 2

Note 2

Clear

Clear

Empty

Clear

(fl

n (fl

~ n Note 5

Power
-l ~ BASIC ENOl n -l :I: n

On ~ :I: RESET STOP

BCD Card

Interrupt Enable Bit Clear Clear Clear Clear Clear

Active nmeout Counter Clear Clear Clear Clear Clear

Interrupt Enable Mask Clear Clear Clear Clear Clear

Hardware Reset of Card Reset Note 1 Note 1 Note 1 Note 1

Rewind Driver I Rwd Rwd Rwd Rwd Rwd

BCDlBinary Mode Swich Swich
EPROM Programmer

Hardware Reset of Card Reset Reset Reset

Programming Time Register Clear Clear

Target Address Register Clear Clear

- = Unchanged

Swtch = Set according to the switches on the interface card

Dscon = A disconnect is performed

Note 1: Reset only if card is not ready.

LOAD

Clear

Clear

Clear

Note 1

Rwd

Note 2: Cleared only if corresponding modem control line is not set.

Note 3: Sent only if System Controller.

Note 6

GET Reset Main SUB

Cmd Prerun Entry

Clear Clear Clear

Clear Clear

Clear Clear Clear

Note 1 Reset Note 1

Rwd Rwd Rwd

Reset

Clear

Clear

Note 4: If System Controller and Active Controller, address is set to 21. Otherwise, it is set to 20.

SUB CLR

Exit 1/0

Note 1

Rwd

Note 5: Pressing the STOP key is identical in function to executing STOP or END. Editing or altering a paused program causes the

program to go into the stopped state.

Note 6: Caused by sending a non-zero value to CONTROL register O.

Note 7: This is a "soft reset," which does not include an interface self-test or a reconfiguration of protocol.

Note 8: Set according to the value used in the most recent CONTROL statement directed to Register 3. If there has been no

CONTROL 3 statement, the switch settings are used.

Useful Tables D-21

Second Byte of Non-ASCII Key Sequences (String)
Holding the I CTRL 1 key and pressing a non-ASCII key generates a two-character sequence
on the CRT. For example,

I CTRL 1- I Clear line 1

produces the following characters on the CRT:

~%

Non-ASCII keypresses can be simulated by outputting these two-byte sequences to the
keyboard. For example,

OUTPUT KBD;CHR$(255)&"%";

produces the same result as shown above. The decimal value of the first byte is 255 (on
some computers this is the "inverse-video" ~).

The following table can be used to look up the key that corresponds to the second
character of the sequence. (On the small HP 98203A keyboard some non-ASCII keys
generate ASCII characters when they are pressed while holding the I CTRL 1 key down.)

Normally on an ITF keyboard, [ill corresponds to ON KEY 1 ... , [![) corresponds to ON
KEY 2 ... , etc. However, you can use CONTROL KBD,14;1 to change this relationship
so that [ill corresponds to ON KEY 0 ... , [![) corresponds to ON KEY 1, etc.

With 98203 keyboard compatibility (KBD CMODE ON), the ITF keyboard softkeys [ill
thru [EJ, the I Menu 1 and I System 1 keys, and [![) thru [][I correspond to 98203 soft keys
CEQ] thru [E[), respectively. See "Porting to Series 300" chapter of BASIC Programm'ing
Techn'iques for further information about this mode.

The terms System and User in the ITF Key column refer to the softkey menu which is
currently active on an ITF keyboard.

D-22 Useful Tables

ITF 98203 Closure
Char. Val. Key Key Key

space 32 1 1

! 33 IShift~~ I SHIFT H CLR 1/0 I Yes

" 34 1 1

35 i Shift H (.;iear iine I I CLR LN I
$ 36 System @] I ANY CHAR I Yes

% 37 I Clear line I I CLR+END I Yes

" 38 I Select ~ 2

. 39 I Prey I 2 Yes

(40 I Shift H Tab I I SHIFT H TAB I

) 41 I Tab I ITABI

* 42 II nsert line I IINS LN I Yes

+ 43 I I nsert char I IINS CHR I

44 I Next I 2 Yes

- 45 I Delete char I I DEL CHR I

46 2 2

/ 47 I Delete line I I DEL LN I Yes

0 48 User 3 [][) [EQJ Yes

1 49 User llliJ [ill Yes

2 50 User 1 @] [ill Yes

3 51 User 1 [][) [ill Yes

4 52 User 1 [EJ [ill Yes

5 53 User 1 [§J [![] Yes

6 54 User 100 [ill Yes

7 55 User 1 @] [ill Yes

8 56 User 1 [][) [ill Yes

9 57 User 2lliJ [@] Yes

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non­
alphanumeric keycode.).

2 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an
error Is not reported. Instead, the system will perform as much of the indicated action as possible.

4 These keys have no system meaning, and will BEEP if not trapped by ON KBD.

Useful Tables D-23

ITF 98203 Closure
Char. Val. Key Key Key

: 58 System I Shift ~OO 4 2

; 59 System I Shift HTIJ 4 2

< 60 0 G
= 61 Result3 I RESULT I
> 62 [8 G
? 63 Recall3 6 I RECALL I
CI 64 I Shift ~ Recall3 7 I SHIFT H RECALL I
A 65 System [EJ I PRT ALL I Yes

B 66 I Back space I I BACK SPACE I
C 67 System @] I CONTINUE I
0 68 2 I EDIT I
E 69 I Enter 18 I ENTER I Yes

F 70 System 00 I DISPLAY FCTNS I Yes

G 71 I Shift ~[8 I SHIFT ~G

H 72 I Shift ~0 I SHIFT ~G

I 73 I Break I I CLR I/O I
J 74 (Katakana) 2 (Katakana) 2

K 75 I Clear display I I CLR SCR I Yes

L 76 Graphics 3 I GRAPHICS I Yes

M 77 Alpha 3 I ALPHA I Yes

N 78 Dump Graph 3 I DUMP GRAPHICS I Yes

0 79 Dump Alpha 3 9 I DUMP ALPHA I Yes

2 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard. an
error is not reported. Instead, the system will perform as much of the indicated action as possible.

3 This ITF key is located in the System Control Key Group just above the Numeric Keypad Group. Note
that these keys have no labels on their keycaps; however, they do have labels on the BASIC keyboard
overlay for the ITF keyboard. For information on the BASIC keyboard overlay for the ITF keyboard,
read the manual entitled Installing, Using, and Maintaining the BASIC System.

4 These keys have no system meaning, and will BEEP if not trapped by ON KBD.
6 also System [00
7 also System []blli}[OO
8 Or Return

D-24 Useful Tables

ITF 98203 Closure
Char. Val. Key Key Key

p 80 I]!Q£] 'PAUSE I Yes

Q 81 1 1

R 82 System @] 'RUNI Yes

S 83 System l!!J , STEP I Yes

T 84 'Shift HYJ 'SHIFT ~[IJ Yes

U 85 ~ 'CAPS LOCK I Yes

V 86 [!J [IJ Yes

W 87 'Shift ~0 'SHIFT ~CD Yes

X 88 2
'EXECUTEI Yes

y 89 (Roman) 2 (Roman) 2 Yes

Z 90 1 1

[91 System [][) 'CLR TAB I
\ 92 m 2 Yes

] 93 System , Shift ~[][) , SET TAB I

- 94 0 CD Yes

95 System , Shift ~m 2 Yes -
c 96 1 1

a 97 User 2 @] , SH I FT ~[EQJ Yes

b 98 User 2 @] , SH I FT H:TIJ Yes

c 99 User 2 [ill , SH I FT ~[ill Yes

d 100 User 2 [][) , SH I FT ~[ill Yes

e 101 User 200 , SHIFTHEJ Yes

f 102 User 2 @] 'SHIFT Hl§J Yes

g 103 User 2 [][) 'SHIFT Hl[] Yes

h 104 User 3lliJ , SH I FT ~[ill Yes

These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non­
alphanumeric keycode.).

2 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an
error Is not reported. Instead, the system will perform as much of the indicated action as possible.

Useful Tables D-25

ITF 98203 Closure
Char. Val. Key Key Key

i 105 User 3 [ill I SHIFT HMJ Yes

j 106 User 3 @] I SHIFT ~[E[] Yes

k 107 User 3 [EJ 2 Yes

1 108 User 3 [][] 2 Yes

m 109 User 300 2 Yes

n 110 User 3 [![) 2 Yes

0 111 System I Shift ~[IT] 4 2

P 112 System I Shift ~[ill 4 2

q 113 System I Shift ~@] 4 2

r 114 System I Shift ~[EJ 4 2

s 115 User I Shift ~[IT] 4 5 2

t 116 User I Shift ~[ill 4 5 2

u 117 User I Shift ~@] 4 5 2

v 118 User I Shift ~[EJ 4 2

w 119 User I Shift ~[][] 4 2

x 120 User I Shift ~oo 4 2

Y 121 User I Shift ~[![) 4 2

z 122 User I Shift Hill 4 2

{ 123 I User I 2 Yes

I 124 I Menu I 2 Yes

} 125 I System I 2 Yes

- 126 I Shift H Menu I 2 Yes

127 1 1

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non­
alphanumeric keycode.).

2 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an
error Is not reported. Instead, the system will perform as much of the indicated action as possible.

4 These keys have no system meaning, and will BEEP if not trapped by ON KBD.
5 These keys are also generated by the HP 46060A/B and HP 46095A (HP Mouse devices) buttons unless

GRAPHICS INPUT IS is using them.

D-26 Useful Tables

Selected High-Precision Metric Conversion Factors

I I To convert from I
English Units Metric Units English to Metric.

multiply by:

Length
mil micro metre (micron)
inch millimetre
foot metre t
mile (intI.) kilometre

Area
inch2 millimetre2

foot2 metre2

mile2 kilometre2

acre hectare
(U.S. survey)

Volume
inches3 millimetres3

feet3 metres3

ounces centimetres3

(U.S. fluid)
gallon litre :t:
(U.S. fluid)

Mass
pound (avdp.) kilogram
ton (short) ton (metric)

Force
ounce (force) dyne
pound (force) newton

Pressure
psi pascal
inches of Hg millibar
(at 32°F)

Energy
BTU (1ST) Calorie

(kg, thermochem.)
BTU (1ST) watt-hour
BTU (1ST) joule §
ft·lb joule

Power
BTU (IST)/hr watt
horsepower watt
(mechanical)
horsepower watt
(electric)
ft·lb/s watt

Temperature
°Rankine kelvin
°Fahrenheit °Celsius

..:.- Exact conversion
t Conversion redefined in 1959
:j: Conversion redefined in 1964
§ Conversion redefined in' 1956

Note: The preferred metric unit for
force is the newton; for pressure, the
pascal; and for energy, the joule.

Sources

Prefix

exa
peta
tera
giga
mega
kilo
hecto
deka

2.54 x 101
..:.-

2.54 x 101
..:.-

3.048 x 10-1*
1.609344..:.-

6.451 6 x 102
..:.-

9.290304 x 10-2
..:.-

2.589988 110
4.046873 x 10-1

1.6387064 x 104
..:.-

2.831 684659 x 10-2

2.957353 x 101

3.785412

4.5359237 x 10-1
..:.-

9.0718474 x 10-1
..:.-

2.780 138510 x 104

4.448 221 615

6.894757293 x 103

3.3864 x 10 1

2.521644 007 x 10-1

2.930710702 x 10- 1

1.055055853 x 103

1.355817948

2.930710 702 x 10-1

7.456998716 x 102

7.46 x 102
..:.-

1.355817948

1.8..:.-
°C=("F-32) 11.8..:.-

Symbol Multiplier Prefix

E 10 18 deci
P lOIS centi
T 10 12 milli
G 109 micro
M 106 nano
k 103

h 102
pico
femto

da 101 atto

To convert from
Metric to English.

multiply by:

3.937007874 x 10-2

3.937007874 x 10-2

3.280 839 895
6.213 711 922 x 10-1

1.550003 100 x 10-3

1.076391042 x 101

3.861 021 585 x 10-1

2.471044

6.102 374409 x lO-s

3.531466672 x 101

3.381 402 x 10-2

2.641 721 x 10- 1

2.204 622 622
1.102311 311

3.596 943 090 x lO-
s

2.248089431 x 10-1

1.450377 377 x 10-4

2.9529 x 10-2

3.965666831

3.412 141 633
9.478171203 X 10-4

7.375621493 x 10-1

3.412 141 633
1.341 022090 x 10-3

1.340482574 x 10-3

7.375621 493 x 10-1

5.555555556 x 10-1

OF = (oC x 1.8)+32..:.-

Symbol Multiplier

d 10-1

c 10-2

m 10-3

/J- 10-6

n 10-9

p 10-12

f 1O- 1S

a 10-18

American SOCiety for Testing and Materials (ASTM), "Standard for Metric Practice" Reprinted from Annual
Book of ASTM Standards.

U.S. Department of Commerce, National Bureau of Standards, "NBS Guidelines for the Use of the Metric
System" Reprinted from Dimensions/ NBS. (October 1977)

Useful Tables D-27

Notes

D-28 Useful Tables

Error Messages

1 Missing option or configuration error .

• If a statement requires an option which
is not loaded, the option number or option
name (see table below) is given along with
error 1.

• Error 1 without an option number indicates
other configuration errors.

Option Option
Number Binary Number Binary

1 BASIC Main 21 CS80
2 GRAPH 22 BUBBLE
3 GRAPHX 23 EPROM
4 10 24 HP 9885
5 BASIC Main 25 HPIB
6 TRANS 26 FHPIB
7 MAT 27 SERIAL
8 PDEV 28 GPIO
9 XREF 29 BCD
10 KBD 30 DCOMM
11 CLOCK 31-40 Reserved
12 LEX 41 "U navailable"
13 BASIC Main 42 CRTB
14 MS 43 CRTA
15 SRM 44-45 Reserved
16 Reserved 46 COMPLEX
17 PCIB 1 47 CRTX
18 KNB2_0 48 EDIT
19 ERR 49 Reserved
20 DISC 50 HFS

E

1 This binary is included in the support software for the HP 98647 PC Instruments Interface. It is not
supplied with the BASIC 5.0 system.

Error Messages E-l

2 Memory overflow. If you get this error while loading a file, the program is too
large for the computer's memory. If the program loads, but you get this error
when you press RUN, then the overflow was caused by the variable declarations.
Either way, you need to modify the program or add more read/write memory.

3 Line not found in current context. Could be a GOTO or GOSUB that references
a non-existent (or deleted) line, or an EDIT command that refers to a non­
existent line label.

4 Improper RETURN. Executing a RETURN statement without previously
executing an appropriate GOSUB or function call. Also, a RETURN statement
in a user-defined function with no value specified.

5 Improper context terminator. You forgot to put an END statement III the
program. Also applies to SUBEND and FNEND.

6 Improper FOR ... NEXT matching. Executing a NEXT statement without
previously executing the matching FOR statement. Indicates improper nesting
or overlapping of the loops.

7 Undefined function or subprogram. Attempt to call a SUB or user-defined
function that is not in memory. Look out for program lines that assumed an
optional CALL.

8 Improper parameter matching. A type mismatch between a pass parameter
and a formal parameter of a subprogram.

9 Improper number of parameters. Passing either too few or too many parameters
to a subprogram. Applies only to non-optional parameters.

10 String type required. Attempting to return a numeric from a user-defined string
function.

11 Numeric type required. Attempting to return a string from a user-defined
numeric function.

12 Attempt to redeclare variable. Including the same variable name twice III

declarative statements such as DIM or INTEGER.

13 Array dimensions not specified. Using the (*) symbol after a variable name
when that variable has never been declared as an array.

14 OPTION BASE not allowed here. The OPTION BASE statement must
appear before any declarative statements such as DIM or INTEGER. Only
one OPTION BASE statement is allowed in one context.

E-2 Error Messages

15 Invalid bounds. Attempt to declare an array with more than 32 767 elements
or with upper bound less than lower bound.

16 Improper or inconsistent dimensions. Using the wrong number of subscripts
when referencing an array element.

17 Subscript out of range. A subscript in an array reference is outside the current
bounds of the array.

18 String overflow or substring error. String overflow is an attempt to put too
many characters into a string (exceeding dimensioned length). This can happen
in an assignment, an ENTER an INPUT, or a READ. A substring error is an
attempted violation of the rules for substrings. Watch out for null strings where
you weren't expecting them.

19 Improper value or out of range. A value is too large or too small. Applies to
items found in a variety of statements. Often occurs when the number builder
overflows (or underflows) during an I/O operation.

20 INTEGER overflow. An assignment or result exceeds the range allowed for
INTEGER variables. Must be -32768 thru 32767.

22 REAL overflow. An assignment or result exceeds the range allowed for REAL
variables.

24 Trig argument too large for accurate evaluation. Out-of-range argument for a
function such as TAN or LDIR.

25 Magnitude of ASN or ACS argument is greater than 1. Arguments to these
functions must be in the range -1 thru + 1.

26 Zero to non-positive power. Exponentiation error.

27 Negative base to non-integer power. Exponentiation error.

28 LOG or LGT of a non-positive number.

29 Illegal floating point number. Does not occur as a result of any calculations,
but is possible when a FORMAT OFF I/O operation fills a REAL variable with
something other than a REAL number.

30 SQR of a negative number.

31 Division (or MOD) by zero.

32 String does not represent a valid number. Attempt to use "non-numeric"
characters as an argument for VAL, data for a READ, or in response to an
INPUT statement requesting a number.

Error Messages E-3

33 Improper argument for NUM or RPT$. Null string not allowed.

34 Referenced line not an IMAGE statement. A USING clause contains a line
identifier, and the line referred to is not an IMAGE statement.

35 Improper image. See IMAGE or the appropriate keyword in the BASIC
Language Reference.

36 Out of data in READ. A READ statement is expecting more data than is
available in the referenced DATA statements. Check for deleted lines, proper
OPTION BASE, proper use of RESTORE, or typing errors.

38 TAB or TABXY not allowed here. The tab functions are not allowed in
statements that contain a USING clause. TABXY is allowed only in a PRINT
statement.

40 Improper REN, COPYLINES, or MOVELINES command. Line numbers must
be whole numbers from 1 to 32766. This may also result from a COPYLINES
or MOVELINES statement whose destination line numbers lie within the source
range.

41 First line number greater than second line number. Parameters out of order in
a statement like SAVE, LIST, or DEL.

43 Matrix must be square. The MAT functions: IDN, INV, and DET require the
array to have equal numbers of rows and columns.

44 Result cannot be an operand. Attempt to use a matrix as both result and
argument in a MAT TRN or matrix multiplication.

46 Attempting a SAVE when there is no program in memory.

47 COM declarations are inconsistent or incorrect. Includes such things as
mismatched dimensions, unspecified dimensions, and blank COM occurring for
the first time in a subprogram.

49 Branch destination not found. A statement such as ON ERROR or ON KEY
refers to a line that does not exist. Branch destinations must be in the same
context as the ON ... statement.

51 File not currently a~signed. Attempting all ON/OFF END statement with all
unassigned I/O path name.

52 Improper mass storage volume specifier. The characters used for a msvs do not
form a valid specifier. This could be a missing colon, too many parameters,
illegal characters. etc.

E-4 Error Messages

-- 53 Improper file name. The file name is too long or has characters that are not
allowed. LIF file names are limited to 10 characters; SRM file names to 16
characters; HFS file names to 14 characters for Short File Name systems (SFN)
and 255 for Long File Name systems (LFN). Foreign characters are allowed,
but punctuation (in commands, etc.) is not.

- 54 Duplicate file name. The specified file name already exists in directory. It is
illegal to have two files with the same name on one LIF volume or in the same
SRM or HFS directory.

55 Directory overflow. Although there may be room on the media for the file,
there is no room in the directory for another file name. LIF Discs initialized by
BASIC have room for over 100 entries in the directory, but other systems may
make a directory of a different size.

_ 56 File name is undefined. The specified file name does not exist in the directory.
Check the contents of the disc with a CAT command.

>- 58 Improper file type. Many mass storage operations are limited to certain file
types. For example, LOAD is limited to PROG files and ASSIGN is limited to
ASCII, BDAT, and HP-UX files.

59 End of file, buffer or pipe found. For files: No data left when reading a file, or
no space left when writing a file. For buffers: No data left for an ENTER, or no
buffer space left for an OUTPUT. Also, WORD-mode TRANSFER terminated
with odd number of bytes. For pipes: Inbound pipe was closed.

60 End of record found in random mode. Attempt to ENTER or OUTPUT a field
that is larger than a defined record.

62 Protect code violation. Failure to specify the protect code of a protected file,
or attempting to protect a file of the wrong type.

64 Mass storage media overflow. The disc is full. (There is not enough free space
for the specified file size, or not enough contiguous free space on a LIF disc.)

65 Incorrect data type. The array used in a graphics operation, such as GLOAD,
is the wrong type (INTEGER or REAL).

66 INITIALIZE failed. Too many bad tracks found. The disc is defective,
damaged, or dirty.

67 Illegal mass storage parameter. A mass storage statement contains a parameter
that is out of range, such as a negative record number or an out of range number
of records.

Error Messages E-5

68 Syntax error occurred during GET. One or more lines in the file could not be
stored as valid program lines. The offending lines are usually listed on the
system printer. Also occurs if the first line in the file does not start with a valid
line number.

72 Disc controller not found or bad controller address. The msus contains an
improper device selector, or no external disc is connected. For BASIC/UX,
this can also mean the necessary device file in /dev/rmb was not present (LIF
only).

73 Improper device type in mass storage volume specifier. The msvs has the
correct general form, but the characters used for a device type are not
recognized.

76 Incorrect unit number in mass storage volume specifier. The msvs contains a
unit number that does not exist on the specified device.

77 Operation not allowed on open file. The specified file is assigned to an I/O
path name which has not been closed.

78 Invalid mass storage volume label. Usually indicates that the media has not
been initialized on a compatible system. Could also be a bad disc.

79 File open on target device. Attempt to copy an entire volume with a file open
on the destination disc.

80 Disc changed or not in drive. Either there is no disc in the drive or the drive
door was opened while a file was assigned.

81 Mass storage hardware failure. Also occurs when the disc is pinched and not
turning. Try reinserting the disc.

82 Mass storage volume not present. Hardware problem or an attempt to access
a left-hand drive on the Model 226.

83 Write protected. Attempting to write to a write-protected disc. This includes
many operations such as PURGE, INITIALIZE, CREATE, SAVE, OUTPUT,
etc.

84 Record not found. Usually indicates that the media has not been initialized.

85 Media not initialized. (Usually not produced by the internal drive.)

87 Record address error. Usually indicates a problem with the media.

88 Read data error. The media is physically or magnetically damaged, and the
data cannot be read.

E-6 Error Messages

89 Checkread error. An error was detected when reading the data just written.
The media is probably damaged.

90 Mass storage system error. Usually a problem with the hardware or the media.
In BASIC/UX, it could also be a problem in the BASIC/UX mas memory
system software.

93 Incorrect volume code in msvs. The msvs contains a volume number that does
not exist on the specified device.

100 Numeric IMAGE for string item.-

101 String IMAGE for numeric item.

102 Numeric field specifier is too large. Specifying more than 256 characters in a
numeric field.

103 Item has no corresponding IMAGE. The image specifier has no fields that are
used for item processing. Specifiers such as # X / are not used to process the
data for the item list. Item-processing specifiers include things like K DBA.

105 Numeric IMAGE field too small. Not enough characters are specified to
represent the number.

106 IMAGE exponent field too small. Not enough exponent characters are specified
to represent the number.

107 IMAGE sign specifier missing. Not enough characters are specified to represent
the number. Number would fit except for the minus sign.

117 Too many nested structures. The nesting level is too deep for such structures
as FOR, SELECT, IF, LOOP, etc.

118 Too many structures in context. Refers to such structures as FOR/NEXT,
IF /THEN /ELSE, SELECT/CASE, WHILE, etc.

120 Not allowed while program running. The program must be stopped before you
can execute this command.

121 Line not in main program. The run line specified in a LOAD or GET is not
in the main context. 122 Program is not continuable. The program is in the
stopped state, not the paused state. CONT is allowed only in the paused state.

122 Program is not continuable.

125 Program not running.

126 Quote mark in unquoted string. Quote marks must be used in pairs.

Error Messages E-7

127 Statements which affect the knob mode are out of order.

128 Line too long during GET.

131 Unrecognized non-ASCII keycode. An output to the keyboard contained a
CHR$(255) followed by an illegal byte.

132 Keycode buffer overflow. Trying to send too many characters to the keyboard
buffer with an OUTPUT 2 statement.

133 DELSUB of non-existent or busy subprogram.

134 Improper SCRATCH statement.

135 READIO/WRITEIO to nonexistent memory location.

136 REAL underflow. The input or result is closer to zero than 10/308 (approxi­
mately).

140 Too many symbols in the program. Symbols are variable names, I/O path
names, COM block names, subprogram names, and line identifiers.

141 Variable cannot be allocated. It is already allocated.

142 Variable not allocated. Attempt to DEALLOCATE a variable that was not
allocatrd.

143 Reference to missing OPTIONAL parameter. The subprogram is trying to use
an optional parameter that didn't have any value passed to it. Use NPAR to
check the number of passed parameters.

145 May not build COM at this time. Attempt to add or change COM when a
program is running. For example, a program does a LOADSUB and the COM
in the new subprogram does not match existing COM.

146 Duplicate line label in context. There cannot be two lines with the same line
label in one context.

150 Illegal interface select code or device selector. Value out of range.

152 Parity error.

153 Insufficient data for ENTER. A statement terminator was received before the
variable list was satisfied.

154 String greater than 32 767 bytes in ENTER.

155 Improper interface register number. Value out of range or negative.

156 Illegal expression type in list. For example, trying to ENTER into a constant.

E-8 Error Messages

157 No ENTER terminator found. The variable list has been satisfied, but no
statement terminator was received in the next 256 characters. The # specifier
allows the statement to terminate when the last item is satisfied.

158 Improper image specifier or nesting images more than 8 deep. The characters
used for an image specifier are improper or in an improper order.

159 Numeric data not received. When entering characters for a numeric field,
an item terminator was encountered before any "numeric" characters were
received.

160 Attempt to enter more than 32 767 digits into one number.

163 Interface not present. The intended interface is not present, set to a different
select code, or is malfunctioning. In BASIC/UX, the MUX channel is not
opened.

164 Illegal BYTE/WORD operation. Attempt to ASSIGN with the WORD
attribute to a non-word device.

165 Image specifier greater than dimensioned string length.

167 Interface status error. Exact meaning depends upon the interface type. With
HP-IB, this can happen when a non-controller operation by the computer is
aborted by the bus.

168 Device timeout occurred and the ON TIMEOUT branch could not be taken.

170 I/O operation not allowed. The I/O statement has the proper form, but its
operation is not defined for the specified device. For example, using an HP-IB
statement on a non-HP-IB interface or directing a LIST to the keyboard.

171 Illegal I/O addressing sequence. The secondary addressing in a device selector
is improper, primary address is too large for specified device, or primary address
is required for MUX interface.

172 Peripheral error. PSTS line is false. If used, this means that the peripheral
device is down. If PSTS is not being used, this error can be suppressed by
using control register 2 of the GPIO.

173 Active or system controller required. The HP-IB is not active controller and
needs to be for the specified operation.

174 Nested I/O prohibited. An I/O statement contains a user-defined function.
Both the original statement and the function are trying to access the same file
or device.

Error Messages E-9

177 Undefined I/O path name. Attempting to use an I/O path name that is not
assigned to a device or file.

178 Trailing punctuation in ENTER. The trailing comma or semicolon that is
sometimes used at the end of OUTPUT statements is not allowed at the end
of ENTER statements.

180 HFS disc may be corrupt.

181 No room in HFS buffers.

182 Not supported by HFS.

183 Permission denied. You have insufficient access rights for the specified opera­
tion.

186 Cannot open the specified directory.

187 Cannot link across devices.

188 Renaming using ., .. , or / not allowed.

189 Too many open files.

190 File size exceeds the maximum allowed.

191 Too many links to a file.

192 Networking error.

193 Resource deadlock would occur.

194 Operation would block.

195 Too many levels of a symbolic link.

196 Amigo disk file is busy.

197 Incorrect device type in device file.

198 Initialize procedure killed by signal.

301 Cannot do while connected.

303 Not allowed when trace active.

304 Too many characters without terminator.

306 Interface card failure. The datacomm card has failed self-test.

308 Illegal character in data.

E-10 Error Messages

310 Not connected.

313 USART receive buffer overflow. Overrun error detected. Interface card IS

unable to keep up with incoming data rate. Data has been lost.

314 Receive buffer overflow. Program is not accepting data fast enough to keep up
with incoming data rate. Data has been lost.

315 Missing data transmit clock. A transmit timeout has occurred because a
missing data clock prevented the card from transmitting. The card has
disconnected from the line.

316 CTS false too long. The interface card was unable to transmit for a predeter­
mined period of time because Clear-To-Send was false on a half-duplex line.
The card has disconnected from the line.

317 Lost carrier disconnect. Data Set Ready (DSR) or Data Carrier Detect (if full
duplex) went inactive for too long.

318 No activity disconnect. The card has disconnected from the line because no
data was transmitted or received for a predetermined length of time.

319 Connection not established. Data Set Ready or Data Carrier Detect (if full
duplex) did not become active within a predetermined length of time.

324 Card trace buffer overflow.

325 Illegal databits/parity combination. Attempting to program 8 bits-per­
character and a parity of "I" or "0".

326 Register address out of range. A control or status register access was attempted
to a non-existent register.

327 Register value out of range. Attempting to place an illegal value in a control
register.

328 USART Transmit underrun.

330 User-defined LEXICAL ORDER IS table size exceeds array size.

331 Repeated value in pointer. A MAT REORDER vector has repeated subscripts.
This error is not always caught.

332 Non-existent dimension given. Attempt to specify a non-existent dimension in
a MAT REORDER operation.

333 Improper subscript in pointer. A MAT REORDER vector specifies a non­
existent subscript.

Error Messages E-ll

334 Pointer size is not equal to the number of records. A MAT REORDER vector
has a different number of elements than the specified dimension of the array.

335 Pointer is not a vector. Only single-dimension arrays (vectors) can be used as
the pointer in a MAT REORDER or a MAT SORT statement.

337 Substring key is out-of-range. The specified substring range of the sort key
exceeds the dimensioned length of the elements in the array.

338 Key subscript out-of-range. Attempt to specify a subscript in a sort key outside
the current bounds of the array.

340 Mode table too long. User-defined LEXICAL ORDER IS mode table contains
more than 63 entries.

341 Improper mode indicator. User-defined LEXICAL ORDER IS table contains
an illegal combination of mode type and mode pointer.

342 Not a single-dimension integer array. User-defined LEXICAL ORDER IS mode
table must be a single-dimension array of type INTEGER.

343 Mode pointer is out of range. User-defined LEXICAL ORDER IS table has a
mode pointer greater than the existing mode table size.

344 1 for 2 list empty or too long. A user-defined LEXICAL ORDER IS table
contains an entry indicating an improper number of 1 for 2 secondaries.

345 CASE expression type mismatch. The SELECT statement and its CASE
statpments must refer to thp same general type, numeric or string.

346 INDENT parameter out-of-range. The parameters must be in the range: 0 thru
eight characters less than the screen width.

347 Structures improperly matched. There is not a corresponding number of
structure beginnings and endings. Usually means that you forgot a statement
such as END IF, NEXT, END SELECT, etc.

349 CSUB has been modified. A contiguous block of compiled subroutines has been
modified since it was loaded. A single module that shows as multiple CSUB
statements has been altered because program lines were inserted or deleted.

353 Data link failure.

369-398 Errors in this range are reported if a run-time Pascal error occurs in a CSUB. To
determine the Pascal error number. subtract 400 from the BASIC error number.
Information on the Pascal error can be found in the Pascal Workstation System
manual.

E-12 Error Messages

401 Bad system function argument. An invalid argument was given to a time, date,
base conversion, or SYSTEM$ function.

403 Copy failed; program modification incomplete. An error occurred during a
COPYLINES or MOVELINES resulting in an incomplete operation. (Some
lines may not have been copied or moved.)

427 Priority may not be lowered.

435 EXEC not allowed on this Binary.

450 Volume not found-SRM error.

451 Volume labels do not match-SRM error.

453 File in use-SRM error.

454 Directory formats do not match-SRM error.

455 Possibly corrupt file-SRM error.

456 Unsupported directory operation-SRM or HFS error.

457 Passwords not supported-SRM error.

458 Unsupported directory format-SRM error.

459 Specified file is not a directory-SRM or H~S error.

460 Directory not empty-SRM or HFS error.

461 Duplicate passwords not allowed.

462 Invalid password-SRM error.

465 Invalid rename across volumes-SRM or HFS error.

466 Duplicate volume entries.

471 TRANSFER not supported by the interface.

481 File locked or open exclusively-SRM or HFS error.

482 Cannot move a directory with a RENAME operation-SRM or HFS error.

483 System down-SRM error.

484 Password not found-SRM error.

485 Invalid volume copy-SRM error.

Error Messages E-13

488 DMA hardware required. HP 9885 disc drive requires a DMA card or IS

malfunctioning.

511 The result array in a MAT INV must be of type REAL.

516 Search key: improper dimensions.

517 Search start out of range.

519 HIL SEND Cmd arg out of range.

520 Cmd not supported on active dev.

521 Device sent Register I/O Error.

522 Device not present.

523 Statement requires HIL interface.

526 Source: improper dimensions.

527 Source subscript out of range.

528 Source: upper bound < lower bound.

531 Source/destination mismatch.

536 Dest.: improper dimensions.

537 Dest. subscript out of range.

538 Dest. upper bound < lower bound.

540 HIL bus error.

541 Keyboard interrupts disabled.
Operation requires bit 0 of KBD STATUS/CONTROL register 7 to be o.

543 Redim error: improper dimensions.

544 Redim not allowed on source.

600 Attribute cannot be modified. The WORD/BYTE mode cannot be changed
after assigning the I/O path name.

601 Improper CONVERT lifetime. When the CONVERT attribute is included in
the assignment of an I/O path name, the name of a string variable containing
the conversion is also specified. The conversion string must exist as long as the
I/O path name is valid.

E-14 Error Messages

602 Improper BUFFER lifetime. The variable designated as a buffer during an I/O
path name assignment must exist as long as the I/O path name is valid.

603 Variable was not declared as a BUFFER. Attempt to assign a variable as a
buffer without first declaring the variable as a BUFFER.

604 Bad source or destination for a TRANSFER statement. Transfers are not

or device to device transfers are not allowed.

605 BDAT or HP-UX file type required. Only a BDAT or HP-UX file can be used
in a TRANSFER operation.

606 Improper TRANSFER parameters. Conflicting or invalid TRANSFER param­
eters were specified, such as RECORDS without and EOR clause, or DELIM
with an outbound TRANSFER.

607 Inconsistent attributes. Such as CONVERT or PARITY with FORMAT OFF.

609 IVAL or DVAL result too large. Attempt to convert a binary, octal, decimal,
or hexadecimal string into a value outside the range of the function.

610 Premature TRANSFER termination.

612 BUFFER pointers in use. Attempt to change one or more buffer pointers while
a TRANSFER is in progress.

613 Cannot store a ROM system.

620 COMPLEX value not allowed.

623 ATN is undefined at +i and -i.

624 ACSH/ ATNH arg out of range.

625 Bad SEARCH condition on COMPLEX.

700 Improper plotter specifier. The characters used as a plotter specifier are not
recognized. May be misspelled or contain illegal characters.

702 CRT graphics hardware missing. Hardware problem.

704 Upper bound not greater than lower bound. Applies to P2<=Pl or VIEW­
PORT upper bound and CLIP limits. 705 VIEWPORT or CLIP beyond hard
clip limits.

705 VIEWPORT or CLIP off surface.

708 Device not initialized.

Error Messages E-15

713 Request not supported by dev.

715 Graphics open failed on CRT device.

733 GESCAPE opcode not recognized.

810 Feature not supported on HP-UX.

811 Memory allocation failed.

812 Out of semaphores.

813 Semaphore dealloration error.

814 Cannot access rmb lockfile.

815 Canot access HP -UX time.

816 Invalid opcode in program.

817 Cannot spawn new process.

818 Kernel error setting signals.

825 Default EXT SIGNAL received.

826 EXECUTE process status failure.

827 String too long for EXECUTE.

830 Cannot open the pipe.

831 Write to a broken pipe.

832 Cannot seek on the pipe.

833 Wrong directory data transfer in pipe.

840 HIL mask error.

841 CSUB run-time error.

842 CSUB relocatio error.

843 Invalid CSUB version number.

844 Invalid CSUB binary format.

850 Iomap of device failed.

851 Iounmap of device failed.

852 Iomap device file size wrong.

E-16 Error Messages

860 Unknown display type.

861 PRINTER IS device not assigned.

862 Window parameter out of range.

863 Not in a window system.

864 Window specifier out of range.

865 Window already exists.

866 Window does not exist.

867 Cannot create window.

880 Current CRT is not bitmapped.

881 Array is not INTEGER type.

882 CHRX not matched by array dim.

883 CHRY not matched by array dim.

897 Array is not I-dimensional.

898 Typing aid is too long.

899 Key number out of range.

900 Undefined typing aid key.

901 Typing aid memory overflow.

902 Must delete entire context. Attempt to delete a SUB or DEF FN statement
without deleting its entire context. Easiest way to delete is with DELSUB.

903 No room to renumber. While EDIT mode was renumbering during an insert, all
available line numbers were used between insert location and end of program.

904 Null FIND or CHANGE string.

905 CHANGE would produce a line too long for the system. Maximum line length
is two lines on the CRT.

906 SUB or DEF FN not allowed here. Attempt to insert a SUB or DEF FN
statement into the middle of a context. Subprograms must be appended at the
end.

Error Messages E-17

909 May not replace SUB or DEF FN. Similar to deleting a SUB or DEF FN.
Attempted to insert lines: between a CSUB statement and the following SUB,
DEF FN, or CSUB statement; or after a final CSUB statement at the end of
the program.

910 Identifier not found in this context. The keyboard-specified variable does not
already exist in the program. Variables cannot be created from the keyboard;
they must be created by running a program.

911 Improper I/O list.

920 Numeric constant not allowed.

921 Numeric identifier not allowed.

922 Numeric array element not allowed.

923 Numeric expression not allowed.

924 Quoted string not allowed.

925 String identifier not allowed.

926 String array element not allowed.

927 Substring not allowed.

928 String expression not allowed.

929 I/O path name not allowed.

930 Numeric array not allowed.

931 String array not allowed.

932 Excess keys specified. A sort key was specified following a key which specified
the entire record.

935 Identifier is too long: 15 characters maximum.

936 Unrecognized character. Attempt to store a program line containing an
improper name or illegal character.

937 Invalid OPTION BASE. Only 0 and 1 are allowed.

939 OPTIONAL appears twice. A parameter list may have only one OPTIONAL
keyword. All parameters listed before it are required, all listed after it are
optional. 940 Duplicate formal parameter name.

940 Duplicate formal param name.

E-18 Error Messages

942 Invalid I/O path name. The characters after the C) are not a valid name. Names
must start with a letter.

943 Invalid function name. The characters after the FN are not a valid name. Names
must start with a letter.

946 Dimensions are inconsistent with previous declaration. The references to an
array contain a different number of subscripts at different places in the program.

947 Invalid array bounds. Value out of range, or more than 32767 elements
specified.

948 Multiple assignment prohibited. You cannot assign the same value to multiple
variables by stating X=Y=Z=O. A separate assignment must be made for each
variable.

949 Syntax error at cursor. The statement you typed contains elements that don't
belong together, are in the wrong order, or are misspelled.

950 Must be a positive integer.

951 Incomplete statement. This keyword must be followed by other items to make
a valid statement.

954 Improper default specification.

955 No range given.

956 Source/destination mismatch.

961 CASE expression type mismatch. The CASE line contains items that are not
the same general type, numeric or string.

962 Programmable only: cannot be executed from the keyboard.

963 Command only: cannot be stored as a program line.

977 Statement is too complex. Contains too many operators and functions. Break
the expression down so that it is performed by two or more program lines.

980 Too many symbols in this context. Symbols include variable names, I/O path
names, COM block names, subprogram names, and line identifiers.

982 Too many subscripts: maximum of six dimensions allowed.

983 Wrong type or number of parameters. An improper parameter list for a
machine-resident function.

985 Invalid quoted string.

987 Invalid line number: must be a whole number 1 thru 32 766.

Error Messages E-19

Notes

E-20 Error Messages

Table of Contents

Appendix F: Keyword Summary
Booting the System .. F -1
Program Entry/Editing. .. F-1
Program Debugging and Error Handling F-2
Memory Allocation and Management. .. F-3
Comparison Operators. .. F-3
General Math .. F-4
Complex Math ... F-5
Binary Functions ... F-5
Trigonometric Operations .. F-6
Hyperbolic Operations. .. F-6
String Operations .. F-6
Logical Operators. .. F-7
Mass Storage .. F-7
Program Control. .. F-9
Event-Initiated Branching ... F-10
HP-HIL Device Support .. F-13
Graphics Control .. F -13
Graphics Plotting. .. F -15
Graphic Axes and Labeling ... F-15
HP-IB Control ... F-16
Clock and Calendar .. F-16
General Device Input/Output ... F -17
Display and Keyboard Control. .. F-18
Array Operations .. F-20
Vocabulary. .. F -21

Keyword Summary F
The following sections summarize the BASIC keywords by categories.

Booting the System

LIST BIN Lists binaries in the system.

LOAD BIN

SYSBOOT

rmb

QUIT

Loads a BIN-type file into memory (BASIC Workstation only).

Returns system control to the boot ROM (BASIC Workstation only).

(HP-UX command) enters BASIC/UX from HP-UX.

Exits BASIC/UX and returns to HP-UX.

Program Entry/Editing
CHANGE

COPYLINES

EDIT

FIND

DEL

INDENT

LIST

MOVELINES

REM and!

REN

SECURE

Performs search and replace operations on the program in memory.

Copies program lines from one position to another.

Accesses a program using edit mode to enter new program lines or
modify existing ones. Also used with typing-aid softkeys.

Searches for a character sequence in a program.

Deletes specified program lines from memory.

Indents a program to reflect its structure.

Lists program lines or typing-aid softkeys.

Moves program lines from one position to another.

Allows comments on program lines.

Renumbers programs.

Makes program lines unlistable.

Keyword Summary F-l

Program Debugging and Error Handling
CAUSE ERROR Simulates the occurrence of the BASIC error of the specified

number.

CLEAR ERROR Resets most error indicators (ERRN, ERRLN, ERRM$, and
ERRL) to their power-up state.

ERRDS Returns the device selector involved in the last I/O error.

ERRL Indicates whether an error occurred during execution of a specified
line.

ERRLN Returns the program-line number of the most recent error.

ERRM$ Returns the text of the last error message.

ERRN Returns the most recent program execution error.

ERROR RETURN Returns program control to the line following the line which caused
the most recent GOSUB. Used with ON ERROR GOSUB to avoid
retrying the line that caused the error (use RETURN to return
control to the line which caused the error).

ERROR SUBEXIT Returns program control to the line following the line which caused
the most recent CALL. Used with ON ERROR CALL to avoid
retrying the line that caused the error (use SUBEXIT to return
control to the line which caused the error).

TRACE ALL

TRACE PAUSE

TRACE OFF

XREF

Allows tracing of program flow and variable assignments during
program execution.

Causes program execution to pause at a specified line.

Disables TRACE ALL and TRACE PAUSE.

Provides a cross-reference to all identifiers used in a program.

F -2 Keyword Summary

Memory Allocation and Management
ALLOCATE

COM

COMPLEX

DEALLOCATE

DEL SUB

DIM

INITIALIZE

INTEGER

LOADSUB

OPTION BASE

REAL

SCRATCH

Dimensions and allocates memory for arrays or string variables
during program execution.

Dimensions and reserves memory for variables in a common area
for access by more than one context.

Dimensions and reserves memory for complex variahles and arrays.

Reclaims memory previously allocated.

Deletes specified subprograms from memory.

Dimensions and reserves memory for REAL numeric arrays and
strings.

Creates and deletes RAM mass storage volumes. (See also under
"Mass Storage.")

Dimensions and reserves memory for INTEGER variables and
arrays.

Loads BASIC subprograms from a PROG-type file into memory.

Specifies the default lower bound for arrays.

Dimensions and reserves memory for full-precision (REAL) vari­
ables and arrays.

Erases selected portions of memory.

Comparison Operators
Equality.

<>

<

<=

>

>=

Inequality.

Less than.

Less than or equal to.

Greater than.

Greater than or equal to.

Keyword Summary F-3

General Math
+

*
/

ABS

DIV

DROUND

EXP

FRACT

INT

LET

LGT

LOG

MAX

MAXREAL

MIN

MINREAL

MOD

MODULO

PI

PROUND

RANDOMIZE

RES

RND

Addition operator.

Subtraction operator.

Multiplication operator.

Division operator.

Exponentiation operator.

Returns an argument's absolute value.

Divides one argument by another and returns the integer portion
of the quotient.

Returns the value of an expression, rounded to a specified number
of digits.

Raises the base e to a specified power.

Returns the fractional portion of an expression.

Returns the integer portion of an expression.

Assigns values to variables.

R~turns the log (base 10) of an argument.

Returns the natural logarithm (base e) of an argument.

Returns the largest value in a list of arguments.

Returns the largest number available.

Returns the smallest value in a list of arguments.

Returns the smallest number available.

Returns the remainder of integer division.

Return the modulo of division.

Returns an approximation of 1r.

Returns the value of an expression, rounded to the specified power
of tell.

Modifies the seed used by the RND function.

Returns last live keyboard numeric result.

Returns a pseudo-random number.

F -4 Keyword Summary

SGN

SQRT

SQR

Complex Math
ARG

CMPLX

CONJG

IMAG

REAL

Binary Functions
BINAND

BINCMP

BINEOR

BINI OR

BIT

ROTATE

SHIFT

Returns the sign of an argument.

Returns the square root of an argument (same as SQR).

Returns the square root of an argument (same as SQRT).

Returns the argument (or the angle in polar coordinates) of a
COMPLEX value.

Creates a COMPLEX value, given a real and an imaginary part.

Returns the conjugate of a COMPLEX value (negates imaginary
part).

Returns the imaginary part of a COMPLEX value.

Returns the real part of a COMPLEX value.

Returns the bit-by-bit logical-and of two arguments.

Returns the bit-by-bit complement of an argument.

Returns the bit-by-bit exclusive-or of two arguments.

Returns the bit-by-bit inclusive-or of two arguments. -

Returns the state of a specified bit of an argument.

Returns a value obtained by shifting an argument's binary repre­
sentation a number of bit positions, with wrap-around.

Returns a value obtained by shifting an argument's binary repre­
sentation a number of bit positions, without wrap-around.

Keyword Summary F-5

Trigonometric Operations
ACS Returns the arccosine of an argument.

ASN

ATN

COS

DEG

RAD

SIN

TAN

Returns the arcsine of an argument.

Returns the arctangent of an argument.

Returns the cosine of an angle.

Sets the degrees mode.

Sets the radians mode.

Returns the sine of an angle.

Returns the tangent of an angle.

Hyperbolic Operations
ACSH Returns the hyperbolic arc cosine of a numeric expression.

ASNH Returns the hyperbolic arcsine of a numeric expression.

ATNH Returns the hyperbolic arctangent of a numeric expression.

COSH Returns the hyperbolic cosine of a numeric expression.

SINH Returns the hyperbolic sine of a numeric expression.

TANH Returns the hyperbolic tangent of a numeric expression.

String Operations
& Concatenates two string expressions.

CHR$ Converts a numeric value into an ASCII character.

DVAL Converts an alternate-base representation into a numeric value.

DVAL$ Converts a numeric value into an alternate-base representation.

IVAL Converts an alternate-base representation into an INTEGER
number.

IVAL$ Converts an INTEGER into an alternate-base representation.

LEN Returns the number of characters in a string expression.

LEXICAL Determines the collating sequence used in string comparisons.
ORDER IS

LWC$ Returns the lowercase value of a string expression.

F -6 Keyword Summary

MAXLEN

NUM

POS

REV$

TRIM$

UPC$

VAL

VAL$

Returns the maximum (dimensioned) length of a string variable.

Returns the decimal value of the first character in a string.

Returns the position of a string within a string expression.

Reverses the order of the characters in a string expression.

Repeats the characters in a string expression a ~pecified number
of times.

Removes the leading and trailing blanks from a string expression.

Returns the uppercase value of a string expression.

Converts a string of numerals into a numeric value.

Returns a string expression representing a specified numeric value.

Logical Operators
AND

EXOR

NOT

OR

Mass Storage
ASSIGN

CAT

CHECKREAD

CHGRP

CHOWN

COpy

CREATE

CREATE ASCII

CREATE BDAT

CREATE DIR

Returns 1 or 0 based on the logical AND of two arguments.

Returns 1 or 0 based on the logical exclusive-or of two arguments.

Returns 1 or 0 based on the logical complement of an argument.

Returns 1 or 0 based on the logical inclusive-or of two arguments.

Assigns an I/O path name and attributes to a file.

Lists the contents of the mass storage media's directory.

Enables or disables read-after-write verification of mass storage
operations.

Changes the group id of an HFS file or directory.

Changes the ownership of an HFS file or directory.

Provides a method of copying mass storage files and volumes.

Creates an HP-UX-type file on a mass storage media.

Creates an ASCII-type file on a mass storage media.

Creates a BDAT-type file on a mass storage media.

Creates a directory on a mass storage media.

Keyword Summary F-7

GET

INITIALIZE

LINK

LOAD

LOAD KEY

LOADSUB

LOCK

Reads an ASCII or HP-UX file into memory as a program.

Formats a mass storage media for use with BASIC and places a
LIF directory on the media.

Allows the linking of two file names to the same file.

Loads a PROG-type file into memory.

Loads typing-aid softkey definitions.

Loads BASIC subprograms from a PROG-type file into memory.

Prevents other SRM workstation computers from accessing the
file to which the specified I/O path is currently assigned.

MASS STORAGE IS Specifies the default mass storage device.
or MSI

PERMIT

PRINT LABEL

PROTECT

PURGE

READ LABEL

RENAME

SAVE and
RE-SAVE

STORE and
RE-STORE

STORE KEY and
RE-STORE KEY

STORE SYSTE~f

lJNLOCK

Changes the access permission bits on an HFS file or directory.

Writes a string expression to the label of a media.

Specifies a LIF protect code or a password for an SRM file or
directory.

Deletes a file or directory.

Reads the label of a media to a string variable.

Changes a directory's name or file's name and/or path.

Create an ASCII file and write BASIC program lines as strings
into the file. RE-SAVE can write to an existing HP-UX file.

Create a PROG file and write a BASIC program from memory
into the file in an internal format.

Create a BDAT file and store the typing-aid soft key definitions in
the file.

Stores BASIC and all binaries currently in memory ill a SYST~f
file on LIF and SRM. On HFS, it is an HP-UX file.

Removes exclusive access to an SRM file set by the LOCK state­
ment.

F -8 Keyword Summary

Program Control

CALL

CaNT

DEF FN

FNEND

END

FN

FOR ... NEXT

COTO

COSUB

IF ... TREN

ELSE

LOOP

EXIT IF

NPAR

ON

PAUSE

Transfers program execution to a specified subprogram and passes
parameters.

Resumes execution of a paused program.

Defines the beginning of a function subprogram.

Defines the bounds of a user-defined function subprogram.

Terminates program execution and marks the end of the main
program segment.

Invokes a user-defined function.

Defines a loop which is repeated a specified number of times.

Transfers program execution to a specified line.

Transfers program execution to a specified subroutine.

Provides conditional branching.

Provides a conditional execution of a program segment.

Defines a loop which is repeated until the expression in an EXIT
IF statement is evaluated as true.

Provides looping with conditional exit.

Returns the number of parameters passed to the current sub­
program.

expression Transfers program execution to one of several locations
based on the value of an expression.

Suspends program execution.

REPEAT ... UNTIL Allows execution of a program segment until the specified condition
is true.

RETURN Transfers program execution from a subroutine to the line following
the invoking COSUB.

RETURN expression Transfers program execution from a user-defined func­
tion by returning a value to the calling context.

RUN Starts program execution.

SELECT ... CASE Allows execution of one program segment of several.

Keyword Summary F-9

STOP

SUB

SUBEND

SUBEXIT

SUSPEND/
RESUME
INTERACTIVE

SYSTEM$

WAIT

WAIT FOR EaR

WAIT FOR EaT

WHILE

Terminates execution of the program.

Defines the beginning of a SUB subprogram and specifies its
formal parameters.

Defines the bounds of a subprogram.

Transfers control from within a subprogram to the calling context.

Allows suspending and resuming interactive keyboard operation
while a program is running.

Returns selected system status and configuration information.

Causes program execution to wait a specified number of seconds.

Causes program execution to wait for an end-of-record during a
TRANSFER.

Causes program execution to wait for an end-of-transfer.

Allows execution of a program segment while the specified condi­
tion is true.

Event-Initiated Branching

CDIAL

DISABLE

DISABLE EXT
SIGNAL

DISABLE INTR

ENABLE

ENABLE EXT
SIGNAL

ENABLEINTR

EXECUTE

HILBUF$

Returns information about "control dial" devices.

Disables event-initiated branching (except for ON END, ON ER­
ROR, and ON TIMEOUT).

Disable BASIC/UX handling of HP-UX signals.

Disables interrupts defined by the ON INTR statement.

Re-enables all event-initiated branches previously suspended by
DISABLE.

Enable BASIC/UX handling of HP-UX signals.

Enables the specified interface to generate an interrupt which can
cause event-initialted branches.

Execute an HP-UX command from BASIC/UX.

Returns data sent by an HP-HIL device.

F -10 Keyword Summary

KBD$

KNOBX

KNOBY

ON CDIAL

OFF CDIAL

ON CYCLE

OFF CYCLE

ON DELAY

OFF DELAY

ON END

OFF END

ONEOR

OFF EOR

ONEOT

OFF EOT

ON ERROR

OFF ERROR

Returns the contents of the ON KBD buffer.

Returns the number of horizontal knob pulses.

Returns the number of vertical knob pulses.

Sets up and enables a branch to be taken upon sensing rotation
of one of the dials on a "control dial" device.

Disables any ON CDIAL branching currently set up.

Defines and enables an event-initiated branch to be taken each
time the specified number of seconds has elapsed.

Cancels any event-initiated branches previously defined and en­
abled by an ON CYCLE statement.

Defines an enables an event-initiated branch to be taken after the
specified number of seconds has elapsed.

Cancels any event-initiated branches previously defined and en­
abled by an ON 1?ELAY statement.

Defines and enables an event-initiated branch to be taken when
end-of-file is reached on the mass storage file associated with the
specified I/O path.

Cancels any event-initiated branches previously defined and e.n­
abled by an ON END statement.

Defines and enables an event-initiated branch to be taken when
an end-of-record is encountered during a TRANSFER.

Cancels any event-initiated branches previously defined and en­
abled by an ON EOR statement.

Defines and enables an event-initiated branch to be taken when
the last byte is tranferred by a TRANSFER statement.

Cancels any event-initiated branches previously defined and en­
abled by an ON EOT statement.

Defines and enables an event-initiated branch which results from
a trappable error.

Cancels any event-initiated branches previously defined and en­
abled by an ON ERROR statement. Further errors are reported
to the user in the usual fashion.

Keyword Summary F-ll

ON EXT SIGNAL Defines an event-initiated branch to be taken when a system
generated signal is received (BASIC/UX only).

OFF EXT SIGNAL Cancels event-initiated branches previously defined by an ON
EXT SIGNAL statement (BASIC/UX only).

ON BIL EXT

OFF BIL EXT

ONINTR

OFFINTR

ONKBD

Enables an end-of-line interrupt in response to receiving data from
BIL devices whose poll records are not otherwise being processed
by the BASIC system.

Cancels any event-initiated branches previously defined and en­
abled by an ON BIL EXT statement.

Defines an event-initiated branch to be taken when an interface
card generates an interrupt.

Cancels any event-initiated branches previously defined and en­
abled by an ON INTR statement.

Defines an event-initiated branch to be taken when a key IS

pressed.

OFF KBD Cancels any event-initiated branches previously defined and en­
abled by an ON KBD statement.

ON KEY ... LABEL Defines and enables an event-initiated branch to be taken when a
soft key is pressed.

OFF KEY

ON KNOB

OFF KNOB

ON SIGNAL

OFF SIGNAL

Cancels any event-initiated branches previously defined and en­
abled by an ON KEY statement.

Defines an event-initiated branch to be taken when the knob is
turned.

Cancels any event-initiated branches previously defined and en­
abled by an ON KNOB statement. Any pending ON KNOB
branches are lost. Further use of the knob will result in normal
scrolling or cursor movement.

Defines an event-initiated branch to be taken when a SIGNAL
statement is executed using the same signal selector.

Cancels the ON SIGNAL definition with the same signal selector.
If no signal selector is provided, all ON SIGNAL definitions are
cancelled. OFF SIGNAL only applies to the current context.

F-12 Keyword Summary

ON TIME

OFF TIME

ON TIMEOUT

OFF TIMEOUT

SET HIL MASK

SIGNAL

SYSTEM
PRIORITY

Defines an event-initiated branch to be taken when the clock
reaches a specified time.

Cancels any event-initiated branches previously defined and en­
abled by an ON TIME statement.

Defines an event-initiated branch to be taken when an I/O timeout
occurs on the specified interface.

Cancels any event-initiated branches previously defined and en­
abled by an ON TIMEOUT statement.

Select HIL devices to be used by BASIC/UX processes.

Generates a software interrupt.

Sets a minimum level of system priority for event-initiated
branches.

HP-HIL Device Support
HIL SEND Sends HP-HIL commands to HP-HIL devices.

See also ON/OFF CDIAL, CDIAL, ON/OFF HIL EXT, HILBUF$, ON/OFF KNOB,
KNOBX, KNOBY, in the preceding "Event-Initiated Branching" section.

Graphics Control
ALPHA ON/OFF

AREA

CLIP

Turns the alpha planes on or off.

Selects an area fill color.

Redefines a soft-clip area.

DIGITIZE Inputs the coordinates of a digitized point.

DUMP GRAPHICS Copies the contents of the graphics display to a printing device.

DUMP DEVICE IS Specifies the device for DUMP operations.

GCLEAR Clears the graphics area.

GESCAPE ends and returns device-dependent graphics information.

GINIT Resets graphics parameters to power-on values.

GLOAD Loads the graphics display from an INTEGER array.

G RAPHI CS Turns the graphics planes on or off.
ON/OFF

Keyword Summary F-13

GRAPHICS Specifies the device for digitizing operations.
INPUT IS

GSEND Sends an HPGL command to the current PLOTTER IS device or
file.

GSTORE Copies the contents of the graphics display to an INTEGER array.

PLOTTER IS Specifies the default plotting device or file.

RATIO Returns the physical aspect ratio of the plotter's hard-clip limits.

READ LOCATOR Samples the locator device, without waiting for a digitize signal.

SET ECHO Specifies the coordinates of an echo on the current plotting device.

SET LOCATOR Sets the locator position on the input device.

SET PEN Defines the color of entries in the color map.

SHOW Defines plotting units that will appear in the VIEWPORT area.

TRACK ... ON jOFF Enables and disables locator tracking on the current display
device.

VIEWPORT Specifies an area in which WINDOW and SHOW statements are
mapped.

WHERE Returns the current logical position of the pen.

WINDOW Specifies the min and max values for the plotting area specified
by VIEWPORT.

F-14 Keyword Summary

Graphics Plotting
DRAW

IDRAW

IMOVE

IPLOT

LINE TYPE

MOVE

PDIR

PEN

PENUP

PIVOT

PLOT

POLYGON

POLYLINE

RECTANGLE

RPLOT

Draws a line to a specified point.

Draws a line incrementally to a specified point.

Moves the pen incrementally to a specified point.

Draws a line incrementally to the specified point with optional
pen control.

Selects a plotting line type.

Moves the pen to a specified point.

Specifies rotation for IPLOT, RPLOT, RECTANGLE, POLY­
GON and POLYLINE.

Selects a plotter pen.

Lifts the pen from the plotting surface.

Specifies rotation for lines made with moves, draws, plots, poly­
gons, or rectangles.

Draws a line to the specified point with optional pen control.

Draws all or part 'of a closed polygon.

Draws all or part of an open polygon.

Draws a rectangle that can be filled and edged.

Draws a line relative to a movable origin with optional pen control.

Graphic Axes and Labeling
AXES

CSIZE

FRAME

GRID

LABEL

LDIR

LORG

SYMBOL

Draws axes with optional tick marks.

Sets the size and aspect ratio for labeled characters.

Draws a frame around the current clipping area.

Draws a full grid pattern for axes.

Draws alphanumeric labels.

Defines the angle for drawing labels.

Specifies a labeling location relative to the pen location.

Allows labeling with user-defined symbols.

Keyword Summary F -15

HP-IB Control
ABORT

CLEAR

LOCAL

Terminates bus activity and asserts IFC.

Places specified devices in a device-dependent state.

Returns specified devices to their local state.

LOCAL LOCKOUT Sends the LLO message, disabling all device's front-panel controls.

PASS CONTROL

PPOLL

PPOLL
CONFIGURE

PPOLL
RESPONSE

PPOLL
UNCONFIGURE

REMOTE

REQUEST

SEND

SPOLL

TRIGGER

Passes Active Controller capability to another device.

Returns a parallel poll byte from the bus.

Programs a parallel poll bit for a specified device.

Defines the computers response to a parallel poll.

Disables parallel poll for specified devices.

Sets specified devices to their remote state.

Sends a service request to the Active Controller.

Sends explicit command and data messages on the bus.

Returns a serial poll byte from a specified device.

Sends the trigger message to specified devices.

Clock and Calendar
DATE

DATE$

SET TIME

SET TIMEDATE

TI~1E

TIME$

TIMEDATE

TIMEZONE

Converts a formatted date into a number of seconds.

Converts a number of seconds into a formatted date.

Sets the time of day on the real-time clock.

Sets the time and date on the real-time clock.

Converts a formatted time of day into a number of seconds past
midnight.

Converts a number of seconds past midnight into a formatted time
of day.

Returns the value of the real-time clock.

IS Specifies the clock offset from Greenwich Mean Time (GMT),
which is used when sharing a disc with an HP-UX system.

F -16 Keyword Summary

General Device Input/Output
ABORTIO Terminates an active TRANSFER.

ASSIGN Associates an I/O path name and attributes with a device, group
of devices, mass storage file, or buffer.

BEEP Produces one of 63 audible tones.

BREAK Sends a Break signal on a serial interface.

CONTROL Sends control information to an interface or a table associated
with an I/O path name.

CRT Returns the device selector of the CRT.

DATA Specifies data accessible via READ statements.

DISP Outputs items to the CRT display line.

DUMP ALPHA Transfers alpha contents of the CRT to a specified device.

DUMP DEVICE IS Specifies a device for DUMP ALPHA and DUMP GRAPHICS
operations.

ENTER Inputs data from a device, file, string, or buffer to a list of
variables.

IMAGE Provides formats for use with ENTER, OUTPUT, DISP, LABEL
and PRINT operations.

INPUT Inputs data from the keyboard to a list of variables.

KBD Returns the device selector of the keyboard.

LINPUT Inputs literal data from the keyboard to a string variable.

OUTPUT Outputs items to a specified device, file, string variable, or buffer.

PRINT Outputs items to the current PRINTER IS device.

PRINTALL IS Specifies a device for logging messages normally sent to the display.

PRINTER IS Specifies a device for PRINT, CAT, and LIST statements.

PRT Returns 701, usually the device selector of an external printer.

READ Inputs data from DATA lists to variables.

READIO Reads the contents of the specified hardware registers on the
specified interface, or reads the contents of the specified memory
address.

Keyword Summary F-17

RESET

RESTORE

SC

SOUND

STATUS

TAB

TABXY

TRANSFER

WRITEIO

Resets an interface or pointers of an I/O path.

Causes a READ statement to access the specified DATA state­
ment.

Returns the interface select code associated with an I/O path.

Produces a single tone or multiple tones on the sound generator
of an HP-HIL interface.

Returns the value from a specified interface status register.

Moves the print position ahead to a specified point; used within
PRINT and DISP statements.

Specifies the print position on the internal CRT; used with PRINT
statements.

Initiates unformatted I/O transfers.

Writes an integer representation of the register data to the speci­
fied hardware register on the specified interface or to the specified
memory address.

Display and Keyboard Control
ALPHA HEIGHT Sets the number of display lines used for alpha output.

ALPHA PEN Selects the pen number to be used for displaying alpha.

CHRX Returns the number of pixel columns in an alpha character cell
on a bit-mapped display.

CHRY Returns the number of pixel rows in an alpha character cell on a
bit-mapped display.

CLEAR LINE Clears the keyboard input line of the display.

CLEAR SCREEN Clears the display screen.

CLEAR WINDO\V Clear the contents of a window (BASIC/UX only).

CLS Clears the display screen.

CREATE WINDOW Create a window to be accessed by BASIC/UX.

CRT

DESTROY
WINDOW

Returns 1, which is the select code of the CRT display.

Delete a window created by BASIC/UX.

F -18 Keyword Summary

DISPLAY
FUNCTIONS
ON/OFF

KBD

KBD CMODE

KBD LINE PEN

KEY LABELS

Enables and disables the "display functions" mode.

Returns 2, which is the select code of the keyboard.

Enables and disables the "98203 Keyboard Compatibility Mode."

Selects the pen number to be used for writing alpha characters on
the "keyboard input line" and associated display areas.

Turns softkey labels on and off.

KEY LABELS PEN Selects the pen number to be used for displaying softkey labels.

LIST WINDOW

MERGE ALPHA

MOVE WINDOW

PRINT PEN

SCRATCH
WINDOW

List all active BASIC/UX windows and their attributes.

Joins the "simulated" separate alpha and graphics rasters set up
by SEPARATE ALPHA FROM GRAPHICS.

Move a text or graphics window created by BASIC/UX.

Selects the pen number to be used for the output area and display
line of the alpha display.

Delete all active BASIC/UX windows except the root BASIC/UX
window.

SEPARATE ALPHA Simulates the separate alpha and graphics rasters of Series 200
displays.

SET ALPHA MASK Specifies which display planes can be modified by alpha display
operations.

SET CHR

SET DISPLAY
MASK

SET KEY

SYSTEM KEYS

USER n KEYS

Re-defines the bit-pattern used by alpha character(s); only avail­
able on bit-mapped alpha displays.

Specifies which planes of the alpha display are to be displayed.

Sets the definition of one or more typing-aid softkeys.

Sets the softkey definitions to the System menu (ITF keyboards
only).

Sets the softkey definitions to the specified User menu (ITF
key boards only).

Keyword Summary F-19

See also CONTROL, DISP, DUMP ALPHA, DUMP DEVICE IS, ENTER, IMAGE,
INPUT, LINPUT, OUTPUT, PRINT, PRINTALL IS, PRINTER IS, STATUS, TAB,
and TABXY in the preceding "I/O Operations" section.

Array Operations
BASE

DET

DOT

MAT

MAT REORDER

MAT SEARCH

MAT SORT

RANK

REDIM

SIZE

SUM

Returns the lower bound of a dimension of an array.

Returns the determinant of a matrix.

Returns the dot product of two vectors.

Performs various operations on numeric and string arrays.

Reorders the elements in an array according to the subscript list
in a vector.

Searches an array for user-defined conditions.

Sorts an array along one dimension according to lexical or numeric
order.

Returns the number of dimensions in an array.

Changes the subscript range of an array.

neturns the number of elements in a dimension of an array.

Returns the sum of all the elements in a numeric array.

F-20 Keyword Summary

Vocabulary
The following list contains all the words which are recognized by Series 200/300
computers with BASIC 5.0. Each individual word is some part of one or more valid
statements or functions. These words cannot be used as variable names unless you mix
their letter case.

A.BORT CALL COUNT DROUND FIND
ABORTIO CASE CREATE DUMP FN
ABS CAT CRT DVAL FNEND
ACK CAUSE CSIZE DVAL$ FOR
ACS CDIAL CSUM FORMAT
ACSH CHANGE CYCLE ECHO FRACT
ALL CHECKREAD EDGE FRAME
ALLOCATE CHGRP DATA EDIT FRENCH
ALPHA CHOWN DATE ELSE FROM
AND CHR DATE$ ENABLE FUNCTIONS
AREA CHR$ DDC END
ARG CHRX DEALLOCATE ENTER GCLEAR
ASCII CHRY DEF EOL GERMAN
ASN CLEAR DEG EOR GESCAPE
ASNH CLIP DEL EOT GET
ASSIGN CLS DELAY ERRDS GINIT
ATN CM DELETE ERRL GLOAD
ATNH CMD DELIM ERRLN GO
AXES CMODE DELSUB ERRM$ GOSUB

CMPLEX DES ERRN GOTO
BASE COLOR DESTROY ERROR GRAPHICS
BDAT COM DET EVEN GRID
BEEP COMPLEX DEVICE EXD GROUP
BIN CONDITIONAL DIGITIZE EXEC GSEND
BINAND CONFIGURE DIM EXECUTE GSTORE
BINCMP CONJG DIR EXIT
BINEOR CONT DISABLE EXOR HEADER
BINIOR CONTROL DISP EXP HEIGHT
BIT CONVERT DISPLAY EXPANDED HIL
BREAK COPY DIV EXT HILBUF
BUFFER COPYLINES DKA EXTEND
BY COS DOT IDD
BYTE COSH DRAW FILL IDN

Keyword Summary F -21

IDRAW LISTEN NOT PRT RST
IF LL NPAR PURGE RSUM
IMAG LN NUM RUN
IMAGE LOAD NV QUIT
IMOVE LOADSUB SAVE
IN LOC ODD RAD SB
INDENT LOCAL OFF RANDOMIZE SC
INDEX LOCATE ON RANK SCALE
INITIALIZE LOCATOR ONE RATIO SCRATCH
INPUT LOCK OPTION RE SCREEN
INT LOCKOUT OPTIONAL READ SEARCH
INTEGER LOG OR READIO SEC
INTENSITY LOOP ORDER REAL SECURE
INTERACTIVE LORG OTHER RECALL SELECT
INTR LWC$ OUT RECORDS SEND
INV OUTPUT RECOVER SEPARATE
10 MAIN OWNER RECTANGLE SET
IPLOT MANAGER REDIM SF
IS MAP PAIRS REM SGN
IVAL MASK PARITY REMOTE SHIFT
IVAL$ MASS PASS REN SHOW

MAT PAUSE RENAME SIGNAL
KBD MAX PDIR REORDER SIN
KBD$ MAXLEN PEN REPEAT SINH
KEY MAXREAL PENUP REQUEST SIZE
KEYS MERGE PERMIT RES SKIP
KNOB MIN PI RESET SORT
KNOBX MINREAL PIVOT RESPONSE SOUND
KNOBY MLA PLOT RESTORE SPANISH

MOD PLOTTER RE-STORE SPOLL
LABEL MODE POLYGON RESUME SQR
LABELS MODULO POLYLINE RETAIN SQRT
LDIR MOVE POS RETURN STANDARD
LEN MOVELINES PPOLL REV$ STATUS
LET MSI PRINT RND STEP
LEXICAL MTA PRINTALL RNM STOP
LGT PRINTER ROTATE STORAGE
LINE NAMES PRIORITY RPLOT STORE
LINK NEXT PRM RPT$ SUB
LINPUT NF PROTECT RRG SUB END
LIST NO PROUND RSC SUBEXIT

F-22 Keyword Summary

SUM TALK TRACK UNT WHERE
SUSPEND TAN TRANSFER UNTIL WHILE
SV TANH TRIGGER UPC$ WIDTH
SWEDISH THEN TRIM$ USER WINDOW
SYMBOL TIME TRN USING WORD
SYSBOOT TIME$ TYPE WRG
SYSTEM TIMED ATE VAL WRITE
SYSTEM$ TIMEOUT UN VAL$ WRITEIO

TIMEZONE UNCONFIGURE VIEWPORT
TAB TO UNL XREF
TABXY TRACE UNLOCK WAIT

ZERO

Note 1: Although LOCATE and SCALE are recognized as reserved words when entered,
they are stored and listed back as VIEWPORT and WINDOW, respectively.

Note 2: Although CSUB can appear as a reserved word in a program listing, it is not
recognized as a reserved word when entered from the keyboard.

Keyword Summary F-23

Notes

F-24 Keyword Summary

HP Part Number
98613-90052
Microfiche No. 98613-99052
Printed in U.S.A. E0888

Fli;' HEWLETT
a:~ PACKARD

98613-90642
For Internal Use Only

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55
	C-56
	C-57
	C-58
	C-59
	C-60
	C-61
	C-62
	C-63
	C-64
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	F-00
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	F-22
	F-23
	F-24
	xBack

